切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2021, Vol. 16 ›› Issue (03) : 239 -244. doi: 10.3877/cma.j.issn.1673-9450.2021.03.013

所属专题: 文献

论著

基质细胞衍生因子-1α联合自体富血小板血浆修复小鼠皮肤损伤实验研究
凌云浩1, 许丽玉1, 郭毅斌1, 刘小飞1, 郑健生1,()   
  1. 1. 363000 漳州,联勤保障部队第九〇九医院 厦门大学附属东南医院烧伤整形科
  • 收稿日期:2021-03-05 出版日期:2021-06-01
  • 通信作者: 郑健生
  • 基金资助:
    福建省自然科学基金(2019J01143)

Experimental study of stromal cell derived factor-1α combined with autologous platelet-rich plasma to repair skin injury in mice

Yunhao Ling1, Liyu Xu1, Yibin Guo1, Xiaofei Liu1, Jiansheng Zheng1,()   

  1. 1. Department of Burns and Plastic Surgery, the 909th Hospital of Chinese People′s Liberation Army, Southeast Affiliated Hospital of Xiamen University, Zhangzhou 363000, China
  • Received:2021-03-05 Published:2021-06-01
  • Corresponding author: Jiansheng Zheng
引用本文:

凌云浩, 许丽玉, 郭毅斌, 刘小飞, 郑健生. 基质细胞衍生因子-1α联合自体富血小板血浆修复小鼠皮肤损伤实验研究[J/OL]. 中华损伤与修复杂志(电子版), 2021, 16(03): 239-244.

Yunhao Ling, Liyu Xu, Yibin Guo, Xiaofei Liu, Jiansheng Zheng. Experimental study of stromal cell derived factor-1α combined with autologous platelet-rich plasma to repair skin injury in mice[J/OL]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2021, 16(03): 239-244.

目的

探讨基质细胞衍生因子-1α(SDF-1α)联合自体富血小板血浆(PRP)在小鼠皮肤损伤修复过程中的作用效果,并分析其作用机制。

方法

选取6~8周龄健康C57小鼠24只,对24只小鼠分别抽取颈动脉血制备PRP;分别在每只小鼠脊柱2侧对称部位作直径为1.0 cm的圆形全层皮肤损伤创面,共建立48个创面,小鼠按随机数字表法分为观察组和对照组;每组各12只小鼠24个创面。48个创面均予PRP覆盖,观察组经皮下创面内予SDF-1α溶液(100 μg SDF-1α+100 μL 0.9%氯化钠溶液)从正常皮肤处经皮下注射至创面内,对照组同时采取同样方法注射200 μL 0.9%氯化钠溶液,均连续注射7 d,2次/d,12 h/次。采用酶联免疫吸附试验(ELISA)检测对比造模后第7、14、21天2组创面血小板内皮细胞生长因子(VEGF)和转化生长因子β1(TGF-β1)表达量,采用蛋白质免疫印迹法对比造模后第7、14天2组创面VEGF蛋白和Samd1蛋白表达量,对比2组造模后第7、14、21天创面收缩情况及创面愈合时间。数据进行t检验。

结果

造模后第7、14天,观察组组织中VEGF含量分别为(0.66±0.07)、(0.49±0.07) pg/mL,均高于对照组[(0.45±0.05)、(0.45±0.06) pg/mL],差异均有统计学意义(t=10.83、2.25,P<0.05);造模后第21天,观察组组织中VEGF含量[(0.44±0.06) pg/mL]和对照组[(0.43±0.06) pg/mL]相比,差异无统计学意义(t=0.30,P>0.05)。造模后第7、14天,观察组组织中TGF-β1含量分别为(0.54±0.05)、(0.38±0.04) pg/mL,均高于对照组[(0.34±0.04、0.35±0.05) pg/mL],差异均有统计学意义(t=13.76、2.52,P<0.05);造模后第21天,观察组组织中TGF-β1含量[(0.33±0.04) pg/mL]和对照组[(0.35±0.04) pg/mL]相比,差异无统计学意义(t=-1.66,P>0.05)。造模后第7、14天,观察组VEGF蛋白均高于对照组,差异有统计学意义(t=7.31、4.29,P<0.05),观察组Samd1蛋白均高于对照组,差异有统计学意义(t=2.74、11.13,P<0.05)。造模后第7、14天,观察组的创面愈合收缩率为(41.98±6.94)%、(75.23±10.41)%,与对照组[(36.93±7.59)%、(64.56±5.96)%]比较,差异均有统计学意义(t=2.40、4.35,P<0.05);造模后第21天,观察组创面愈合收缩率[(100.00±0.00) %]与对照组[(99.84±0.74) %]比较,差异无统计学意义(t=1.00,P>0.05)。观察组创面愈合时间为(15.91±1.21) d,短于对照组[(18.95±1.33) d],差异有统计学意义(t=-8.26,P<0.05)。

结论

SDF-1α联合PRP可以促进生长因子表达、调控TGF-β1-Samd信号通路促进创面愈合。

To explore the effects of stromal cell derived factor-1α (SDF-1α) combined with platelet-rich plasma (PRP) in mouse skin injury repair and to explore its mechanism.

Methods

Twenty-four healthy C57 mice aged 6 to 8 weeks were selected and carotid blood was extracted from each mouse to prepare PRP gel. A total of 48 round full-thickness skin injury wounds with a diameter of 1.0 cm were made on 2 symmetrical parts of the spine of each mouse. The mice were divided into observation group and control group according to random number table method. There were 24 wounds, 12 mice in each group. All 48 wounds were covered with PRP gel. In the observation group, SDF-1α solution (100 μg SDF-1α+ 100 μL 0.9% sodium chloride solution) was injected subcutaneously into the wound from the normal skin. The control group was injected with 200 μL 0.9% sodium chloride solution. All the 48 wounds were injected continuously for 7 d, twice a day, 12 h a time.The expression levels of platelet endothelial cell growth factor (VEGF) and transforming growth factor (TGF-β1) in the wound of the two groups were measured and compared by enzyme-linked immunoadsordent assay (ELISA) at 7, 14 and 21 days after modeling.Western blotting was used to compare the expression levels of VEGF protein and SAMD1 protein in the two groups at 7, 14 and 21 days after modeling. Wound healing shrinkage rate at 7, 14 and 21 days after modeling and wound healing time were compared between the two groups. Data was processed with t test.

Results

At 7, 14 days after modeling, the VEGF content in the observation group was (0.66±0.07, 0.49±0.07) pg/mL, which were higher than those in the control group [(0.45±0.05), (0.45±0.06) pg/mL], and the differences were statistically significant (t=10.83, 2.25; P<0.05). At 21 days after modeling, there was no significant difference in VEGF content between the observation group [(0.44±0.06) pg/mL] and the control group [(0.43±0.06) pg/mL] (t=0.30, P>0.05). At 7, 14 days after modeling, the content of TGF-β1 in the observation group was (0.54±0.05), (0.38±0.04) pg/mL, which were greater than those in the control group [(0.34±0.04), (0.35±0.04) pg/mL, and the differences were statistically significant (t=13.76, 2.52; P<0.05). At 21 days after modeling, there was no significant difference in TGF-β1 content between the observation group [(0.33±0.04) pg/mL] and control group [(0.35±0.05) pg/mL](t=-1.66, P>0.05). At 7, 14 days after modeling, VEGF protein in the observation group was higher than those in the control group, and the differences were statistically significant (t=7.31, 4.29; P<0.05). At 7, 14 days after modeling, Samd1 protein in the observation group was higher than those in the control group, and the differences were statistically significant (t=2.74, 11.13; P<0.05). At 7, 14 days after modeling, wound healing shrinkage rate in the observation group was (41.98±6.94) %, (75.23±10.41) %, which were significantly lower than those in the control group [(36.93±7.59) %, (64.56±5.96) %], the differences were statistically significant (t=2.40, 4.35; P<0.05). At 21 days after modeling, there was no significant difference in the wound healing shrinkage rate between the observation group [(100.00±0.00) %] and the control group [(99.84±0.74) %] (t=1.00, P>0.05). The wound healing time of the observation group was(15.91±1.21) d, which was shorter than that of the control group [(18.95±1.33) d], and the difference was statistically significant (t=-8.26, P<0.05).

Conclusion

SDF-1α combined with PRP can promote the expression of growth factors and regulate the TGFβ1-Samd signaling pathway to promote wound healing.

表1 2组小鼠术后不同时相点组织中VEGF和TGF-β1水平比较(±s)
图1 蛋白质印迹法检测2组小鼠造模后第7、14天组织中VEGF蛋白、Samd1蛋白表达情况。A为条带图;B为条图
图2 2组小鼠创面造模后不同时相点愈合情况大体观察
表2 2组小鼠造模后不同时相点创面愈合收缩率和愈合时间比较(±s)
[1]
宁正颖,刘梦栋,尹文,等. 富血小板血浆治疗重度烧伤有效性的Meta分析[J/CD]. 中华损伤与修复杂志(电子版), 2019, 14(5): 350-354.
[2]
高建廷,林剑彪,刘国浚,等. 基质细胞衍生因子-1α联合Integra支架修复全层皮肤缺损创面的实验研究[J/CD]. 中华损伤与修复杂志(电子版), 2019, 14(5): 355-360.
[3]
屈可伸,阙华发. 微小核糖核酸对糖尿病足溃疡的作用机制研究及应用进展[J/CD]. 中华损伤与修复杂志(电子版), 2019, 14(5): 369-373.
[4]
Pratheesh MD, Gade NE, Nath A, ea al. Evaluation of persistence and distribution of intra-dermally administered PKH26 labelled goat bone marrow derived mesenchymal stem cells incutaneous wound healing model[J]. Cytotechnology, 2017, 69(6): 841-849.
[5]
Zhang XL, Shi KQ, Jia PT, et al. Effects of platelet-rich plasma on angiogenesis and osteogenesis-associated factors in rabbits with avascular necrosis of the femoral head[J]. Eur Rev Med Pharmacol Sci, 2018, 22(7): 2143-2152.
[6]
Cabral J, Ryan AE, Griffin MD, et al. Extracellular vesicles as modularors of wound healing[J]. Adv Drug Deliv Rev, 2018, 129: 394-406.
[7]
Lee HR, Park KM, Joung YK, et al. Platelet-rich plasma loaded hydrogel scaffold enhances chondrogenic differentiation and maturation with up-regulation of CB1 and CB2 [J]. J Control Release, 2012, 159(3): 332-337.
[8]
Park SI, Lee HR, Kim S, et al. Time-sequential modulation in expression of growth factors from platelet-rich plasma (PRP) on the chondrocyte cultures[J]. Mol Cell Biochem, 2012, 361(1/2): 9-17.
[9]
汪新伟,荣洁琳,蒋思静,等. 富血小板纤维蛋白在治疗糖尿病兔皮肤溃疡中的实验研究[J]. 安徽医科大学学报,2017, 52(7): 983-987.
[10]
楼敏铭,王宏伟,马洁. 脐带间充质干细胞条件培养液联合透明质酸修复小鼠皮肤损伤[J]. 中国组织工程研究,2018, 22(1): 20-25.
[11]
Bernasconi R, Nystr?m A. Balance and circumstance: The renin angiotensin system in wound healing and fibrosis[J]. Cell Signal, 2018, 51: 34-46.
[12]
Tang D, Zhang J, Yan T, et al. FG-4592 Accelerates Cutaneous Wound Healing by Epidermal Stem Cell Activation via HIF-1α Stabilization[J]. Cell Physiol Biochem, 2018, 46(6): 2460-2470.
[13]
Ridiandries A, Tan JTM, Bursill CA. The Role of Chemokines in wound Healing[J]. Int J Mol Sci, 2018, 19(10): 3217.
[14]
Dai WL, Zhou AG, Zhang H, et al. Efficacy of platelet-rich plasma in the treatment of knee osteoarthritis: a meta-analysis of randomized controlled trials[J]. Arthroscopy, 2017, 33(3): 659-670.
[15]
Sante LD, Villani C, Santilli V, et al. Intra-articular hyaluronic acid vs platelet-rich plasma in the treatment of hip osteoarthritis[J]. Med Ultrason, 2016, 18(4): 463-468.
[16]
Maryam M, Shaghayegh J, Zahra M. Evaluation the effect of testosterone on the number of endothelial progenitor cells and amount of SDF-1α,PDGF, bFGF, and NO[J]. Int J Prev Med, 2019, 10(1): 214.
[17]
Miscianinov V, Martello A, Rose L, et al. MicroRNA-148b Targets the TGF-β Pathway to Regulate Angiogeneis and Endothelial-to-Mesenchymal Transition during Skin Wound Healing [J]. Mol Ther, 2018, 26(8): 1996-2007.
[18]
Bae YU, Son Y, Kim CH, et al. EmbryoIlic stem cell-derived mmu-miR-291a-3p inhibits cellular senescence in human dermal fibroblasts through the TGF-βreceptor 2 pathway[J]. J Gemntol A Biol Sci Med Sci, 2019, 74(9): 1359-1367.
[19]
Hwang IS, Bae HK, Cheong HT. Comparison of the characteristics and multipotential and in vivo cartilage formation capabilities between porcine adipose-derived stem cells and porcine skin-derived stem cell-like cells[J]. Am J Vet Res, 2015, 76(9): 814-821.
[20]
Liao HT, James IB, Marra KG, et al. The effects of platelet-rich plasma on cell proliferation and adipogenic potential of adipose-derived stem cells[J]. Tissue Eng Part A, 2015, 21(21/22): 2714-2722.
[1] 李璐璐, 马利红, 金佳佳, 谷伟. 干扰素基因刺激因子通过肺巨噬细胞胞葬功能调控急性肺损伤小鼠修复的研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(02): 97-103.
[2] 王振宇, 张洪美, 荆琳, 何名江, 闫奇. 膝骨关节炎相关炎症因子与血浆代谢物间的因果关系及中介效应[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 467-473.
[3] 李亚龙, 王星童, 申传安. 异体富血小板血浆在创面修复中的临床应用进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 541-545.
[4] 赵芊, 李亚坤, 李智. 同种异体富血小板血浆临床应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 364-367.
[5] 庹晓晔, 冯光. 复杂胸壁重建策略[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(03): 276-276.
[6] 苏永涛, 王春雷, 徐广琪, 关中正, 焦伟, 隋颖. 胫骨骨膜牵张术联合富血小板血浆对治疗糖尿病足溃疡的疗效观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(03): 238-244.
[7] 程宇欣, 张伟, 孔维诗, 孙瑜. 胶原蛋白敷料在创面修复中应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(01): 73-77.
[8] 唐亦骁, 陈峻, 连正星, 胡海涛, 鲁迪, 徐骁, 卫强. 白果内酯对小鼠肝缺血再灌注损伤保护作用研究[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 278-282.
[9] 张礼刚, 邹志辉, 许顺, 蔡可可, 胡永涛, 梁朝朝. 酒精对慢性非细菌性前列腺炎中T淋巴细胞变化的影响研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(01): 74-81.
[10] 杨阳, 王琤, 周文土, 周冰. Caveolae/Caveolin-1与膜胆固醇共同调控小鼠BMSCs成骨分化[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 137-142.
[11] 蒋心怡, 顾丹丹, 叶艳, 缪佳蓉. RNA测序研究抗菌肽KT2治疗溃疡性结肠炎的作用机制[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(01): 8-15.
[12] 薛伟, 康少英, 郭洪生, 高庆亮, 张英民, 高彦平. 电针联合富血小板血浆治疗膝骨关节炎的疗效观察[J/OL]. 中华针灸电子杂志, 2024, 13(01): 13-17.
[13] 临床多学科协作专家组. 腹盆部创伤急诊CT 专家推荐指南(2024)[J/OL]. 中华诊断学电子杂志, 2024, 12(04): 222-229.
[14] 田峰瑞, 蒋锦源, 李阳, 张连阳. Morel-Lavallée 损伤继发血清肿一例[J/OL]. 中华诊断学电子杂志, 2024, 12(04): 245-248.
[15] 陈念, 张连阳. 严重创伤救治中全血输注进展[J/OL]. 中华诊断学电子杂志, 2024, 12(03): 145-148.
阅读次数
全文


摘要