切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2021, Vol. 16 ›› Issue (03) : 239 -244. doi: 10.3877/cma.j.issn.1673-9450.2021.03.013

所属专题: 文献

论著

基质细胞衍生因子-1α联合自体富血小板血浆修复小鼠皮肤损伤实验研究
凌云浩1, 许丽玉1, 郭毅斌1, 刘小飞1, 郑健生1,()   
  1. 1. 363000 漳州,联勤保障部队第九〇九医院 厦门大学附属东南医院烧伤整形科
  • 收稿日期:2021-03-05 出版日期:2021-06-01
  • 通信作者: 郑健生
  • 基金资助:
    福建省自然科学基金(2019J01143)

Experimental study of stromal cell derived factor-1α combined with autologous platelet-rich plasma to repair skin injury in mice

Yunhao Ling1, Liyu Xu1, Yibin Guo1, Xiaofei Liu1, Jiansheng Zheng1,()   

  1. 1. Department of Burns and Plastic Surgery, the 909th Hospital of Chinese People′s Liberation Army, Southeast Affiliated Hospital of Xiamen University, Zhangzhou 363000, China
  • Received:2021-03-05 Published:2021-06-01
  • Corresponding author: Jiansheng Zheng
引用本文:

凌云浩, 许丽玉, 郭毅斌, 刘小飞, 郑健生. 基质细胞衍生因子-1α联合自体富血小板血浆修复小鼠皮肤损伤实验研究[J]. 中华损伤与修复杂志(电子版), 2021, 16(03): 239-244.

Yunhao Ling, Liyu Xu, Yibin Guo, Xiaofei Liu, Jiansheng Zheng. Experimental study of stromal cell derived factor-1α combined with autologous platelet-rich plasma to repair skin injury in mice[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2021, 16(03): 239-244.

目的

探讨基质细胞衍生因子-1α(SDF-1α)联合自体富血小板血浆(PRP)在小鼠皮肤损伤修复过程中的作用效果,并分析其作用机制。

方法

选取6~8周龄健康C57小鼠24只,对24只小鼠分别抽取颈动脉血制备PRP;分别在每只小鼠脊柱2侧对称部位作直径为1.0 cm的圆形全层皮肤损伤创面,共建立48个创面,小鼠按随机数字表法分为观察组和对照组;每组各12只小鼠24个创面。48个创面均予PRP覆盖,观察组经皮下创面内予SDF-1α溶液(100 μg SDF-1α+100 μL 0.9%氯化钠溶液)从正常皮肤处经皮下注射至创面内,对照组同时采取同样方法注射200 μL 0.9%氯化钠溶液,均连续注射7 d,2次/d,12 h/次。采用酶联免疫吸附试验(ELISA)检测对比造模后第7、14、21天2组创面血小板内皮细胞生长因子(VEGF)和转化生长因子β1(TGF-β1)表达量,采用蛋白质免疫印迹法对比造模后第7、14天2组创面VEGF蛋白和Samd1蛋白表达量,对比2组造模后第7、14、21天创面收缩情况及创面愈合时间。数据进行t检验。

结果

造模后第7、14天,观察组组织中VEGF含量分别为(0.66±0.07)、(0.49±0.07) pg/mL,均高于对照组[(0.45±0.05)、(0.45±0.06) pg/mL],差异均有统计学意义(t=10.83、2.25,P<0.05);造模后第21天,观察组组织中VEGF含量[(0.44±0.06) pg/mL]和对照组[(0.43±0.06) pg/mL]相比,差异无统计学意义(t=0.30,P>0.05)。造模后第7、14天,观察组组织中TGF-β1含量分别为(0.54±0.05)、(0.38±0.04) pg/mL,均高于对照组[(0.34±0.04、0.35±0.05) pg/mL],差异均有统计学意义(t=13.76、2.52,P<0.05);造模后第21天,观察组组织中TGF-β1含量[(0.33±0.04) pg/mL]和对照组[(0.35±0.04) pg/mL]相比,差异无统计学意义(t=-1.66,P>0.05)。造模后第7、14天,观察组VEGF蛋白均高于对照组,差异有统计学意义(t=7.31、4.29,P<0.05),观察组Samd1蛋白均高于对照组,差异有统计学意义(t=2.74、11.13,P<0.05)。造模后第7、14天,观察组的创面愈合收缩率为(41.98±6.94)%、(75.23±10.41)%,与对照组[(36.93±7.59)%、(64.56±5.96)%]比较,差异均有统计学意义(t=2.40、4.35,P<0.05);造模后第21天,观察组创面愈合收缩率[(100.00±0.00) %]与对照组[(99.84±0.74) %]比较,差异无统计学意义(t=1.00,P>0.05)。观察组创面愈合时间为(15.91±1.21) d,短于对照组[(18.95±1.33) d],差异有统计学意义(t=-8.26,P<0.05)。

结论

SDF-1α联合PRP可以促进生长因子表达、调控TGF-β1-Samd信号通路促进创面愈合。

To explore the effects of stromal cell derived factor-1α (SDF-1α) combined with platelet-rich plasma (PRP) in mouse skin injury repair and to explore its mechanism.

Methods

Twenty-four healthy C57 mice aged 6 to 8 weeks were selected and carotid blood was extracted from each mouse to prepare PRP gel. A total of 48 round full-thickness skin injury wounds with a diameter of 1.0 cm were made on 2 symmetrical parts of the spine of each mouse. The mice were divided into observation group and control group according to random number table method. There were 24 wounds, 12 mice in each group. All 48 wounds were covered with PRP gel. In the observation group, SDF-1α solution (100 μg SDF-1α+ 100 μL 0.9% sodium chloride solution) was injected subcutaneously into the wound from the normal skin. The control group was injected with 200 μL 0.9% sodium chloride solution. All the 48 wounds were injected continuously for 7 d, twice a day, 12 h a time.The expression levels of platelet endothelial cell growth factor (VEGF) and transforming growth factor (TGF-β1) in the wound of the two groups were measured and compared by enzyme-linked immunoadsordent assay (ELISA) at 7, 14 and 21 days after modeling.Western blotting was used to compare the expression levels of VEGF protein and SAMD1 protein in the two groups at 7, 14 and 21 days after modeling. Wound healing shrinkage rate at 7, 14 and 21 days after modeling and wound healing time were compared between the two groups. Data was processed with t test.

Results

At 7, 14 days after modeling, the VEGF content in the observation group was (0.66±0.07, 0.49±0.07) pg/mL, which were higher than those in the control group [(0.45±0.05), (0.45±0.06) pg/mL], and the differences were statistically significant (t=10.83, 2.25; P<0.05). At 21 days after modeling, there was no significant difference in VEGF content between the observation group [(0.44±0.06) pg/mL] and the control group [(0.43±0.06) pg/mL] (t=0.30, P>0.05). At 7, 14 days after modeling, the content of TGF-β1 in the observation group was (0.54±0.05), (0.38±0.04) pg/mL, which were greater than those in the control group [(0.34±0.04), (0.35±0.04) pg/mL, and the differences were statistically significant (t=13.76, 2.52; P<0.05). At 21 days after modeling, there was no significant difference in TGF-β1 content between the observation group [(0.33±0.04) pg/mL] and control group [(0.35±0.05) pg/mL](t=-1.66, P>0.05). At 7, 14 days after modeling, VEGF protein in the observation group was higher than those in the control group, and the differences were statistically significant (t=7.31, 4.29; P<0.05). At 7, 14 days after modeling, Samd1 protein in the observation group was higher than those in the control group, and the differences were statistically significant (t=2.74, 11.13; P<0.05). At 7, 14 days after modeling, wound healing shrinkage rate in the observation group was (41.98±6.94) %, (75.23±10.41) %, which were significantly lower than those in the control group [(36.93±7.59) %, (64.56±5.96) %], the differences were statistically significant (t=2.40, 4.35; P<0.05). At 21 days after modeling, there was no significant difference in the wound healing shrinkage rate between the observation group [(100.00±0.00) %] and the control group [(99.84±0.74) %] (t=1.00, P>0.05). The wound healing time of the observation group was(15.91±1.21) d, which was shorter than that of the control group [(18.95±1.33) d], and the difference was statistically significant (t=-8.26, P<0.05).

Conclusion

SDF-1α combined with PRP can promote the expression of growth factors and regulate the TGFβ1-Samd signaling pathway to promote wound healing.

表1 2组小鼠术后不同时相点组织中VEGF和TGF-β1水平比较(±s)
图1 蛋白质印迹法检测2组小鼠造模后第7、14天组织中VEGF蛋白、Samd1蛋白表达情况。A为条带图;B为条图
图2 2组小鼠创面造模后不同时相点愈合情况大体观察
表2 2组小鼠造模后不同时相点创面愈合收缩率和愈合时间比较(±s)
[1]
宁正颖,刘梦栋,尹文,等. 富血小板血浆治疗重度烧伤有效性的Meta分析[J/CD]. 中华损伤与修复杂志(电子版), 2019, 14(5): 350-354.
[2]
高建廷,林剑彪,刘国浚,等. 基质细胞衍生因子-1α联合Integra支架修复全层皮肤缺损创面的实验研究[J/CD]. 中华损伤与修复杂志(电子版), 2019, 14(5): 355-360.
[3]
屈可伸,阙华发. 微小核糖核酸对糖尿病足溃疡的作用机制研究及应用进展[J/CD]. 中华损伤与修复杂志(电子版), 2019, 14(5): 369-373.
[4]
Pratheesh MD, Gade NE, Nath A, ea al. Evaluation of persistence and distribution of intra-dermally administered PKH26 labelled goat bone marrow derived mesenchymal stem cells incutaneous wound healing model[J]. Cytotechnology, 2017, 69(6): 841-849.
[5]
Zhang XL, Shi KQ, Jia PT, et al. Effects of platelet-rich plasma on angiogenesis and osteogenesis-associated factors in rabbits with avascular necrosis of the femoral head[J]. Eur Rev Med Pharmacol Sci, 2018, 22(7): 2143-2152.
[6]
Cabral J, Ryan AE, Griffin MD, et al. Extracellular vesicles as modularors of wound healing[J]. Adv Drug Deliv Rev, 2018, 129: 394-406.
[7]
Lee HR, Park KM, Joung YK, et al. Platelet-rich plasma loaded hydrogel scaffold enhances chondrogenic differentiation and maturation with up-regulation of CB1 and CB2 [J]. J Control Release, 2012, 159(3): 332-337.
[8]
Park SI, Lee HR, Kim S, et al. Time-sequential modulation in expression of growth factors from platelet-rich plasma (PRP) on the chondrocyte cultures[J]. Mol Cell Biochem, 2012, 361(1/2): 9-17.
[9]
汪新伟,荣洁琳,蒋思静,等. 富血小板纤维蛋白在治疗糖尿病兔皮肤溃疡中的实验研究[J]. 安徽医科大学学报,2017, 52(7): 983-987.
[10]
楼敏铭,王宏伟,马洁. 脐带间充质干细胞条件培养液联合透明质酸修复小鼠皮肤损伤[J]. 中国组织工程研究,2018, 22(1): 20-25.
[11]
Bernasconi R, Nystr?m A. Balance and circumstance: The renin angiotensin system in wound healing and fibrosis[J]. Cell Signal, 2018, 51: 34-46.
[12]
Tang D, Zhang J, Yan T, et al. FG-4592 Accelerates Cutaneous Wound Healing by Epidermal Stem Cell Activation via HIF-1α Stabilization[J]. Cell Physiol Biochem, 2018, 46(6): 2460-2470.
[13]
Ridiandries A, Tan JTM, Bursill CA. The Role of Chemokines in wound Healing[J]. Int J Mol Sci, 2018, 19(10): 3217.
[14]
Dai WL, Zhou AG, Zhang H, et al. Efficacy of platelet-rich plasma in the treatment of knee osteoarthritis: a meta-analysis of randomized controlled trials[J]. Arthroscopy, 2017, 33(3): 659-670.
[15]
Sante LD, Villani C, Santilli V, et al. Intra-articular hyaluronic acid vs platelet-rich plasma in the treatment of hip osteoarthritis[J]. Med Ultrason, 2016, 18(4): 463-468.
[16]
Maryam M, Shaghayegh J, Zahra M. Evaluation the effect of testosterone on the number of endothelial progenitor cells and amount of SDF-1α,PDGF, bFGF, and NO[J]. Int J Prev Med, 2019, 10(1): 214.
[17]
Miscianinov V, Martello A, Rose L, et al. MicroRNA-148b Targets the TGF-β Pathway to Regulate Angiogeneis and Endothelial-to-Mesenchymal Transition during Skin Wound Healing [J]. Mol Ther, 2018, 26(8): 1996-2007.
[18]
Bae YU, Son Y, Kim CH, et al. EmbryoIlic stem cell-derived mmu-miR-291a-3p inhibits cellular senescence in human dermal fibroblasts through the TGF-βreceptor 2 pathway[J]. J Gemntol A Biol Sci Med Sci, 2019, 74(9): 1359-1367.
[19]
Hwang IS, Bae HK, Cheong HT. Comparison of the characteristics and multipotential and in vivo cartilage formation capabilities between porcine adipose-derived stem cells and porcine skin-derived stem cell-like cells[J]. Am J Vet Res, 2015, 76(9): 814-821.
[20]
Liao HT, James IB, Marra KG, et al. The effects of platelet-rich plasma on cell proliferation and adipogenic potential of adipose-derived stem cells[J]. Tissue Eng Part A, 2015, 21(21/22): 2714-2722.
[1] 夏传龙, 迟健, 丛强, 连杰, 崔峻, 陈彦玲. 富血小板血浆联合关节镜治疗半月板损伤的临床疗效[J]. 中华关节外科杂志(电子版), 2023, 17(06): 877-881.
[2] 欧阳剑锋, 李炳权, 叶永恒, 胡少宇, 向阳. 关节镜联合富血小板血浆治疗粘连性肩周炎的疗效[J]. 中华关节外科杂志(电子版), 2023, 17(06): 765-772.
[3] 许正文, 李振, 侯振扬, 苏长征, 朱彪. 富血小板血浆联合植骨治疗早期非创伤性股骨头坏死[J]. 中华关节外科杂志(电子版), 2023, 17(06): 773-779.
[4] 张中斌, 付琨朋, 朱凯, 张玉, 李华. 胫骨高位截骨术与富血小板血浆治疗膝骨关节炎的疗效[J]. 中华关节外科杂志(电子版), 2023, 17(05): 633-641.
[5] 王泽勇, 覃健. 白细胞含量对富血小板血浆治疗运动系统损伤的影响[J]. 中华关节外科杂志(电子版), 2023, 17(05): 684-688.
[6] 詹钦文, 靳科, 袁家钦. 不同浓度自体富血小板血浆对慢性跟腱损伤的疗效[J]. 中华关节外科杂志(电子版), 2023, 17(04): 500-507.
[7] 李康, 耿喜林, 汪玉良, 刘京升. 踝关节Logsplitter损伤诊治的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(04): 566-570.
[8] 米洁, 陈晨, 李佳玲, 裴海娜, 张恒博, 李飞, 李东杰. 儿童头面部外伤特点分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 511-515.
[9] 韩李念, 王君. 放射性皮肤损伤治疗的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 533-537.
[10] 周子慧, 李恭驰, 李炳辉, 王知, 刘慧真, 王卉, 邹利军. 细胞自噬在创面愈合中作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 542-546.
[11] 陈继秋, 朱世辉. 皮肤牵张装置的临床应用现状[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 451-453.
[12] 李青霖, 宋仁杰, 周飞虎. 一种重型劳力性热射病相关急性肾损伤小鼠模型的建立与探讨[J]. 中华肾病研究电子杂志, 2023, 12(05): 265-270.
[13] 朱泽超, 杨新宇, 李侑埕, 潘鹏宇, 梁国标. 染料木黄酮通过SIRT1/p53信号通路对蛛网膜下腔出血后早期脑损伤的作用[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 261-269.
[14] 马聪, 李雪靖, 郑晓佐, 张晓阳, 段坤峰, 刘国强, 郄素会. 关节腔内注射富血小板血浆与透明质酸钠治疗Ⅰ-Ⅲ期膝骨关节炎的对比研究[J]. 中华老年骨科与康复电子杂志, 2023, 09(05): 282-288.
[15] 王淑友, 宋晓晶, 贾术永, 王广军, 张维波. 肝脏去唾液酸糖蛋白受体靶向活体荧光成像评估酒精性肝损伤肝脏功能的研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 443-446.
阅读次数
全文


摘要