[1] |
Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications[J]. Nat Rev Endocrinol, 2018, 14(2): 88-98.
|
[2] |
Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition[J]. Diabetes Res Clin Pract, 2019, 157: 107843.
|
[3] |
Dinh TL, Veves A. A review of the mechanisms implicated in the pathogenesis of the diabetic foot[J]. Int J Low Extrem Wounds, 2005, 4(3): 154-159.
|
[4] |
Veves A, Akbari CM, Primavera J, et al. Endothelial dysfunction and the expression of endothelial nitric oxide synthetase in diabetic neuropathy, vascular disease, and foot ulceration[J]. Diabetes, 1998, 47(3): 457-463.
|
[5] |
Singh N, Armstrong DG, Lipsky BA. Preventing foot ulcers in patients with diabetes[J]. JAMA, 2005, 293(2): 217-228.
|
[6] |
Bowling FL, Rashid ST, Boulton AJ. Preventing and treating foot complications associated with diabetes mellitus[J]. Nat Rev Endocrinol, 2015, 11(10): 606-616.
|
[7] |
Armstrong DG, Boulton AJM, Bus SA. Diabetic Foot Ulcers and Their Recurrence[J]. N Engl J Med, 2017, 376(24): 2367-2375.
|
[8] |
Anders JJ, Lanzafame RJ, Arany PR. Low-level light/laser therapy versus photobiomodulation therapy[J]. Photomed Laser Surg, 2015, 33(4): 183-184.
|
[9] |
Tsai SR, Hamblin MR. Biological effects and medical applications of infrared radiation[J]. J Photochem Photobiol B, 2017, 170: 197-207.
|
[10] |
Rohringer S, Holnthoner W, Chaudary S, et al. The impact of wavelengths of LED light-therapy on endothelial cells[J]. Sci Rep, 2017, 7(1): 10700.
|
[11] |
Yadav A, Gupta A. Noninvasive red and near-infrared wavelength-induced photobiomodulation: promoting impaired cutaneous wound healing[J]. Photodermatol Photoimmunol Photomed, 2017, 33(1): 4-13.
|
[12] |
占利民,方林森,王晨,等. 糖尿病足的治疗进展[J]. 实用糖尿病杂志,2020, 16(6): 84-86.
|
[13] |
Finsen N. Om Anvevendelsei Medicinenaf Koncentrerede Kemiske Lysstraaler[M]. Copenhagen: Gyldendalske Boghandels Forlag, 1886: 5-52.
|
[14] |
Grzybowski A, Pietrzak K. From patient to discoverer-Niels Ryberg Finsen (1860-1904)-the founder of phototherapy in dermatology[J]. Clin Dermatol, 2012, 30(4): 451-455.
|
[15] |
Maiman TH. Stimulated Optical Radiation in Ruby[J]. Nature, 1960, 187(4736): 493-494.
|
[16] |
Mester E, Szende B, Gärtner P. The effect of laser beams on the growth of hair in mice[J]. Radiobiol Radiother (Berl), 1968, 9(5): 621-626.
|
[17] |
Sugawara H, Ishikawa M, Hatakoshi G. High-efficiency InGaAlP/GaAs visible light-emitting diodes[J]. Appl Phys Lett, 1991, 58(10): 1010-1012.
|
[18] |
Heiskanen V, Hamblin MR. Photobiomodulation: lasers vs. light emitting diodes?[J]. Photochem Photobiol Sci, 2018, 17(8): 1003-1017.
|
[19] |
Frangež I, Nizi-Kos T, Frangež HB. Phototherapy with LED Shows Promising Results in Healing Chronic Wounds in Diabetes Mellitus Patients: A Prospective Randomized Double-Blind Study[J]. Photomed Laser Surg, 2018, 36(7): 377-382.
|
[20] |
de Alencar Fonseca Santos J, Campelo MBD, de Oliveira RA, et al. Effects of Low-Power Light Therapy on the Tissue Repair Process of Chronic Wounds in Diabetic Feet[J]. Photomed Laser Surg, 2018, 36(6): 298-304.
|
[21] |
熊臻,邹晓芳,杨静,等. 红光治疗在难愈性创面的临床应用及研究进展[J]. 皮肤病与性病,2020, 42(2): 178-180.
|
[22] |
Amirsadeghi A, Jafari A, Eggermont LJ, et al. Vascularization strategies for skin tissue engineering[J]. Biomater Sci, 2020, 8(15): 4073-4094.
|
[23] |
Kaushik K, Das A. Endothelial progenitor cell therapy for chronic wound tissue regeneration[J]. Cytotherapy, 2019, 21(11): 1137-1150.
|
[24] |
Fina L, Molgaard HV, Robertson D, et al. Expression of the CD34 gene in vascular endothelial cells[J]. Blood, 1990, 75(12): 2417-2426.
|
[25] |
Gangenahalli GU, Singh VK, Verma YK, et al. Hematopoietic stem cell antigen CD34: role in adhesion or homing[J]. Stem Cells Dev, 2006, 15(3): 305-313.
|
[26] |
Melincovici CS, Boşca AB, Şuşman S, et al. Vascular endothelial growth factor (VEGF)- key factor in normal and pathological angiogenesis[J]. Rom J Morphol Embryol, 2018, 59(2): 455-467.
|