切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2022, Vol. 17 ›› Issue (04) : 292 -299. doi: 10.3877/cma.j.issn.1673-9450.2022.04.003

论著

Notch信号通路对烧伤大鼠血清诱导的肺血管内皮细胞细胞间黏附分子-1的影响
蔡维霞1, 曹涛1, 赵明1, 肖丹1, 贾艳慧1, 王璟1, 张月1, 王克甲1, 韩军涛1, 胡大海1,()   
  1. 1. 710032 西安,空军军医大学第一附属医院全军烧伤中心,烧伤与皮肤外科
  • 收稿日期:2022-05-02 出版日期:2022-08-01
  • 通信作者: 胡大海
  • 基金资助:
    国家自然科学基金青年项目(81601680); 国家自然科学基金面上项目(81871561)

Effects of Notch signaling pathway on the intercellular adhesion molecule-1 of pulmonary vascular endothelial cell induced by serum in burned rats

Weixia Cai1, Tao Cao1, Ming Zhao1, Dan Xiao1, Yanhui Jia1, Jing Wang1, Yue Zhang1, Kejia Wang1, Juntao Han1, Dahai Hu1,()   

  1. 1. Department of Burns and Cutaneous Surgery, Burn Center of PLA, First Affiliated Hospital of Air Force Medical University, Xi′an 710032, China
  • Received:2022-05-02 Published:2022-08-01
  • Corresponding author: Dahai Hu
引用本文:

蔡维霞, 曹涛, 赵明, 肖丹, 贾艳慧, 王璟, 张月, 王克甲, 韩军涛, 胡大海. Notch信号通路对烧伤大鼠血清诱导的肺血管内皮细胞细胞间黏附分子-1的影响[J]. 中华损伤与修复杂志(电子版), 2022, 17(04): 292-299.

Weixia Cai, Tao Cao, Ming Zhao, Dan Xiao, Yanhui Jia, Jing Wang, Yue Zhang, Kejia Wang, Juntao Han, Dahai Hu. Effects of Notch signaling pathway on the intercellular adhesion molecule-1 of pulmonary vascular endothelial cell induced by serum in burned rats[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2022, 17(04): 292-299.

目的

探讨Notch信号通路对烧伤大鼠血清诱导的肺血管内皮细胞(PMVEC)细胞间黏附分子(ICAM)-1的影响。

方法

42只SD大鼠(6~8周龄)中,随机选取30只,按随机数字表法分为假伤组(n=15)和烧伤组(n=15),烧伤组大鼠于95 ℃热水浸浴背部18 s造成30%总体表面积Ⅲ度烧伤,假伤组大鼠于37 ℃水浴中浸浴背部18 s模拟致伤。伤后6、12、24、48、72 h,烧伤组随机分别取3只大鼠,腹主动脉采血,酶联免疫吸附试验(ELISA)法检测血清中ICAM-1含量,假伤组大鼠行相同检测。取剩下的12只大鼠(6~8周龄)中的6只,按前述方法造成30%总体表面积Ⅲ度烧伤,伤后24 h制备烧伤大鼠血清;剩下的6只大鼠不作处理,制备健康大鼠血清。切取10只出生3 d的SD大鼠的肺外边缘组织,组织块法培养大鼠PMVEC,倒置相差显微镜下观察原代细胞培养2、6 d后的形态特征,流式细胞术对原代培养7 d的细胞进行细胞鉴定。取处于对数生长期的第4代PMVEC进行实验,将细胞接种于6孔板中,待细胞生长至80%融合时按随机数字表法分为3组(每组设3个复孔):对照组(培养液中分别加入体积分数10%健康大鼠血清),二甲基亚砜(DMSO)+烧伤血清组、γ-分泌酶抑制剂(GSI)+烧伤血清组(分别加入3 μL/mL DMSO、75 μmol/L GSI,培养24 h后,加入体积分数10%烧伤大鼠血清刺激培养24 h),ELISA法检测PMVEC上清中ICAM-1的含量;流式细胞仪检测各组PMVEC中ICAM-1的含量;采用蛋白质印迹法检测ICAM-1蛋白表达水平,计算相对蛋白表达量;检测PMVEC的细胞黏附能力。数据比较采用单因素方差分析和LSD-t检验。

结果

(1)烧伤组大鼠伤后6、12、24、48、72 h血清中的ICAM-1含量分别为(19.77±3.03)、(22.09±3.65)、(22.44±4.04)、(25.40±2.51)、(26.37±3.07) pg/mL,显著高于假伤组的[(10.60±1.51)、(11.03±1.95)、(10.87±0.89)、(9.30±0.89)、(10.93±1.22) pg/mL],2组比较差异均有统计学意义(t=4.699、4.466、3.181、10.490、8.097,P<0.05)。(2)原代细胞培养2 d后可见细胞从组织块边缘移出,生长较慢;培养6 d后可见细胞融合,细胞呈铺路石样生长。对原代培养7 d的细胞进行流式细胞术鉴定,结果显示CD31阳性细胞占98.6%,确定为PMVEC。(3)血清刺激培养24 h后,对照组,DMSO+烧伤血清组、GSI+烧伤血清组细胞上清中ICAM-1含量分别为1.21±0.25、2.16±0.12、3.07 ±0.30,3组比较差异有统计学意义(F=46.72,P<0.05);与对照组比较,DMSO+烧伤血清组和GSI+烧伤血清组细胞上清中ICAM-1含量均明显增加,差异均有统计学意义(t=5.977、8.274,P<0.05);GSI+烧伤血清组细胞上清中ICAM-1含量明显高于DMSO+烧伤血清组,2组比较差异有统计学意义(t=4.847,P<0.05)。(4)血清刺激培养24 h后,对照组,DMSO+烧伤血清组、GSI+烧伤血清组PMVEC中ICAM-1平均荧光强度分别为2 582±143、3 453±204、4 559±414,3组比较差异有统计学意义(F=37.84,P<0.05);与对照组比较,DMSO+烧伤血清组、GSI+烧伤血清组细胞中ICAM-1含量均明显增加,差异均有统计学意义(t=6.056、7.817,P<0.05);GSI+烧伤血清组ICAM-1含量明显高于DMSO+烧伤血清组,2组比较差异有统计学意义(t=4.149,P<0.05)。(5)血清刺激培养24 h后,对照组、DMSO+烧伤血清组、GSI+烧伤血清组的ICAM-1/GAPDH比值分别为0.74±0.08、1.07±0.08、1.38±0.28,3组总体比较差异有统计学意义(F=30.76,P<0.05); DMSO+烧伤血清组和GSI+烧伤血清组的ICAM-1/GAPDH比值均明显高于对照组,差异均有统计学意义(t=5.182、6.990,P<0.05);GSI+烧伤血清组ICAM-1/GAPDH比值明显高于DMSO+烧伤血清组,差异有统计学意义(t=3.770,P<0.05)。(6)PMVEC与人单核细胞系THP-1细胞共培养2 h后,倒置荧光显微镜下观察对照组、DMSO+烧伤血清组、GSI+烧伤血清组细胞黏附的细胞数呈递增趋势,3组的细胞数分别为(152.00±21.07)、(265.33±36.83)、(345.67±30.66)个,3组比较差异有统计学意义(F=31.09,P<0.05);DMSO+烧伤血清组和GSI+烧伤血清组黏附的细胞数均明显高于对照组,比较差异均有统计学意义(t=4.626、9.016,P<0.05);GSI+烧伤血清组黏附的细胞数明显高于DMSO+烧伤血清组,差异有统计学意义(t=2.903,P<0.05)。

结论

大鼠烧伤后血清中的ICAM-1含量明显上升,烧伤大鼠血清刺激PMVEC可以导致细胞内ICAM-1含量以及分泌到上清中的ICAM-1含量增加,应用GSI阻断Notch信号通路可以增加ICAM-1的产生及表达,可增加PMVEC对人单核细胞系THP-1细胞的黏附作用。

Objective

To investigate the effect of Notch signaling pathway on the intercellular adhesion molecule (ICAM)-1 of pulmonary vascular endothelial cell (PMVEC) induced by serum in burned rats.

Methods

Among the 42 SD rats (6-8 weeks), 30 were randomly selected and divided into sham injury group(n=15)and burn group(n=15) according to the random number table method. Rats in burn group were immeresed in hot water at 95 ℃ for 18 s, inflicted with 30% total body surface area full-thickness burn on back, and the rats in the sham injury group were immersed in a 37 ℃ water bath for 18 s to simulate injury. At 6, 12, 24, 48, 72 h after injury, 3 rats were randomly selected from the burn group, and blood was collected from the abdominal aorta. Enzyme-linked immunoadsordent assay(ELISA) were used to detected the content of ICAM-1 in rats’ serum. Rats in the sham injury group were subjected to the same test. Six rats of the remaining 12 rats (6-8 weeks) were taken, and 30% total body surface area full-thickness burn was made according to the aforementioned method, and the serum of the burned rats was prepared at 24 h after the injury; the remaining 6 rats were not treated, and the serum of healthy rats was prepared. Marginal pulmonary tissue was harvested from 3 days old 10 SD rats, and the rat PMVEC were culturned with tissue block method. The morphological characteristics of primary cells cultured for 2 and 6 d were observed under an inverted phase contrast microscope, and the cells in primary cultured for 7 d were identified by flow cytometry. The PMVEC cells of the 4th generation at logarithmic growth stage were taken for experiment. The cells were inoculated on 6-well plates, when the cells grew to 80% confluence, they were divided into 3 groups according to the random number table method: the control group, the dimethyl sulfoxide (DMSO)+ burn serum group and the gamma-secretase inhibitor (GSI)+ burn serum group, with 3 wells in each group. Cells in control group were cultured with 10% healthy rat serum, the latter 2 groups added with 3 μL/mL DMSO and 75 μmol/L GSI respectively, and after 24 h of culture, 10% burn rat serum were added to stimulate the culture for 24 h. The content of ICAM-1 in PMVEC supernatant was determined by ELISA, the content of ICAM-1 in PMVEC of each group was detected by flow cytometry, and the protein expression of ICAM-1 was detected by Western blotting, and the relative protein expression was calculated. The cell adhesion ability of PMVEC was detected. Data were processed with one-way ANOVA and LSD-t test.

Results

(1) The serum contents of ICAM-1 in rats of burn group were (19.77±3.03), (22.09±3.65), (22.44±4.04), (25.40±2.51), (26.37±3.07) pg/mL at 6, 12, 24, 48, and 72 h after injury respectively, which were significantly higher than those in the sham injury group [(10.60±1.51), (11.03±1.95), (10.87±0.89), (9.30±0.89), (10.93±1.22)] pg/mL, the differences were statistically significant between the two groups (t=4.699, 4.466, 3.181, 10.490, 8.097; P<0.05). (2) Primary cells grew slowly after 2 d of culture, cells were seen to migrate from the edge of the tissue mass, and cell fusion was observed at 6 d after culture that them showed a cobblestone appearance. Cells in primary cultured for 7 d were identified by flow cytometry, and the results showed that CD31-positive cells accounted for 98.6%, which was determined to be PMVEC. (3) At 24 h after serum stimulation culture, the contents of ICAM-1 in the supernatant of cells in the control group, the DMSO+ burn serum group, and the GSI+ burn serum group were 1.21±0.25, 2.16±0.12 and 3.07 ±0.30, respectively, and the difference was statistically significant among the three groups(F=46.72, P<0.05). Compared with the control group, the content of ICAM-1 in the supernatant of cells in the DMSO+ burn serum group and GSI+ burn serum group was significantly increased, and the differences were statistically significant (t=5.977, 8.274; P<0.05); the content of ICAM-1 in cell supernatant of GSI+ burn serum group was significantly higher than that in the DMSO+ burn serum group, and the difference between the two groups was statistically significant (t=4.847, P<0.05). (4) At 24 h after serum stimulation culture, the mean fluorescence intensity of ICAM-1 in PMVEC of control group, DMSO+ burn serum group and GSI+ burn serum group were 2 582±143, 3 453±204, 4 559±414, respectively, and the difference was statistically significant among the three groups(F=37.84, P<0.05). Compared with the control group, the content of ICAM-1 in cells of DMSO+ burn serum group and GSI+ burn serum group was significantly increased, and the differences were statistically significant (t=6.056, 7.817; P<0.05); the content of ICAM-1 in the GSI+ burn serum group was significantly higher than that in the DMSO+ burn serum group, and the difference was statistically significant between the two groups (t=4.149, P<0.05). (5) At 24 h after serum stimulation culture, the ratios of ICAM-1/GAPDH in the control group, DMSO+ burn serum group, and GSI+ burn serum group were 0.74±0.08, 1.07±0.08, 1.38±0.28, respectively, and the difference was statistically significant among the three groups(F=30.76, P<0.05). The ratios of ICAM-1/GAPDH in the DMSO+ burn serum group and GSI+ burn serum group were significantly higher than that in the control group, and the differences were statistically significant (t=5.182, 6.990; P<0.05). The ICAM-1/GAPDH ratio in the GSI+ burn serum group was significantly higher than that in the DMSO+ burn serum group, and the difference was statistically significant (t=3.770, P<0.05). (6) After PMVEC was incubated with human mononuclear cell line THP-1 cells for 2 h, the number of human mononuclear cell line THP-1 cells adhered to the cells in the control group, DMSO+ burn serum group and GSI+ burn serum group observed under inverted phase contrast fluorescence microscope showed an increasing trend. The number of cells in the three groups were 152.00±21.07, 265.33±36.83, 345.67±30.66, and the difference was statistically significant among the three groups (F=31.09, P<0.05). The number of adherent cells in the DMSO+ burn serum group and GSI+ burn serum group were significantly higher than that in the control group, and the differences were statistically significant (t=4.626, 9.016; P<0.05); the number of adherent cells in the GSI+ burn serum group was significantly higher than that in DMSO+ burn serum group, the difference was statistically significant (t=2.903, P<0.05).

Conclusions

The content of ICAM-1 in the serum of rats after burn is significantly increased. The stimulation of PMVEC in burn rat serum can lead to an increase in the intracellular ICAM-1 content and the secretion of ICAM-1 into the supernatant. The application of GSI to block Notch signaling pathway can increase the production and expression of ICAM-1 and increase the adhesion of PMVEC to human mononuclear cell line THP-1 cells.

图1 倒置相差显微镜下观察原代培养的大鼠PMVEC形态特征(×100)。A示原代培养2 d后的PMVEC,可见细胞从组织块边缘移出;B示原代培养6 d后的PMVEC,可见细胞融合,细胞呈铺路石样生长;PMVEC为肺血管内皮细胞
图2 蛋白质印迹法检测3组血清刺激培养24 h后PMVEC中ICAM-1蛋白表达水平注:各组样本数为3;条带图上方图横轴1、2、3分别为对照组、DMSO+烧伤血清组、GSI+烧伤血清组;PMVEC为肺血管内皮细胞;ICAM为细胞间黏附分子
图3 倒置荧光显微镜下观察3组PMVEC与人单核细胞系THP-1细胞共培养2 h后PMVEC黏附能力(×100);A、B、C分别示对照组、DMSO+烧伤血清组和GSI+烧伤血清组,3组细胞黏附的人单核细胞系THP-1细胞数量呈递增趋势;各组样本数为3,绿色荧光为人单核细胞系THP-1细胞;PMVEC为肺血管内皮细胞;DMSO为二甲基亚砜;GSI为γ-分泌酶抑制剂
[1]
金榕兵,朱佩芳,王正国,等. 烧伤早期肺细胞间粘附分子-1的变化及意义[J]. 解放军医学杂志2001, 26(5): 315-316, 392.
[2]
Potente M, Gerhardt H, Carmeliet P. Basic and therapeutic aspects of angiogenesis[J]. Cell, 2011, 146(6): 873-887.
[3]
Kofler NM, Shawber CJ, Kangsamaksin T, et al. Notch signaling in developmental and tumor angiogenesis[J]. Genes Cancer, 2011, 2(12): 1106-1116.
[4]
Han H, Gong G, Bai X, et al. Inhibition of notch signaling protects mouse lung against zymosan-induced injury[J]. Shock, 2013, 40(4): 312-319.
[5]
Zhu F, Wang J, Qiu X, et al. Smoke inhalation injury repaired by a bone marrow-derived mesenchymal stem cell paracrine mechanism: Angiogenesis involving the Notch signaling pathway[J]. J Trauma Acute Care Surg, 2015, 78(3): 565-572.
[6]
蔡维霞,计鹏,樊磊,等. 活性氧对烧伤大鼠血清诱导肺血管内皮细胞凋亡的影响[J]. 中华烧伤杂志2014, 30(4): 320-324.
[7]
Ernesto S, Marduel Y, Freymond N, et al. Late respiratory function complications following burns[J]. Rev Mal Respir, 2008, 25(3): 328-332.
[8]
黎鳌. 黎鳌烧伤学[M]. 1版. 上海:上海科学技术出版社,2001: 466.
[9]
黄巧冰. 内皮细胞屏障与血管通透性的关系及机制[J]. 中华烧伤杂志2007, 23(5): 324-326.
[10]
Herold S, Gabrielli NM, Vadász I. Novel concepts of acute lung injury and alveolar-capillary barrier dysfunction[J]. Am J Physiol Lung Cell Mol Physiol, 2013, 305(10): L665-681.
[11]
Maniatis NA, Kotanidou A, Catravas JD, et al. Endothelial pathomechanismsin acute lung injury[J]. Vascul Pharmacol, 2008, 49(4/6): 119-133.
[12]
曾健,杨峰,蒋斌,等. 重度烧伤早期肺组织炎症因子的表达[J]. 武汉大学学报(医学版), 2005, 26(6): 718-721.
[13]
Cai W, Shen K, Ji P, et al. The Notch pathway attenuates burn-induced acute lung injury in rats by repressing reactive oxygen species[J]. Burns Trauma, 2022, 10: tkac008.
[14]
Han S, Cai W, Yang X, et al. ROS-Mediated NLRP3 Inflammasome Activity Is Essential for Burn-Induced Acute Lung[J]. Mediators Inflamm, 2015, 2015: 720457.
[15]
Jonkam CC, Bansal K, Traber DL, et al, Perenlei Enkhbaatar Pulmonary vascular permeability changes in an ovine model of methicillin-resistant Staphylococcus aureus sepsis[J]. Crit Care, 2009, 13(1): R19.
[16]
Lange M, Hamahata A, Enkhbaatar P, et al. Assessment of vascular permeability in an ovine model of acute lung injury and pneumonia-induced Pseudomonas aeruginosa sepsis[J]. Crit Care Med, 2008, 36(4): 1284-1289.
[17]
Hubbard AK, Rothlein R. Intercellular adhesion molecule-1 (ICAM-1) expression and cell signaling cascades[J]. Free Radical Biol Med, 2000, 28(9): 1379-1386.
[18]
Wee H, Oh HM, Jo JH, et al. ICAM-1/LFA-1 interaction contributes to the induction of endothelial cell-cell separation: implication for enhanced leukocyte diapedesis[J]. Exp Mol Med, 2009, 41(5): 341-348.
[19]
Gorina R, Lyck R, Vestweber D, et al. β2 integrin-mediated crawling on endothelial ICAM-1 and ICAM-2 is a prerequisite for transcellular neutrophil diapedesis across the inflamed blood-brain barrier[J]. J Immunol, 2014, 192(1): 324-337.
[20]
高洁,曾林祥. Notch信号通路在急性肺损伤中的作用[J]. 临床与实验病理学杂志2014, 30(5): 544-546.
[21]
Zhang S, Loch AJ, Radtke F, et al. Jaggedl is the m ajor regulator of N otch—dependent cell fate in proxim al airways[J]. Dev Dyn, 2013, 242(6): 678-686.
[22]
曹慧秋,文继舫,胡玉林,等. 肺鳞状细胞癌中Notchl-4和Dll-4的表达及与微血管密度的相关性[J]. 临床与实验病理学杂志2012, 28(8): 842-847.
[23]
Cai W, Yang X, Han S, et al. Notch1 Pathway Protects against Burn-Induced Myocardial Injury by Repressing Reactive Oxygen Species Production through JAK2/STAT3 Signaling[J]. Oxid Med Cell Longev, 2016, 2016: 5638943.
[24]
Cai WX, Liang L, Wang L, et al. Inhibition of Notch signaling leads to increased intracellular ROS by up-regulating Nox4 expression in primary HUVECs[J]. Cell Immunol, 2014, 287(2): 129-135.
[1] 高建松, 陈晓晓, 冯婷, 包剑锋, 魏淑芳, 潘林. 基于超声瞬时弹性成像的多参数决策树模型评估慢性乙型肝炎患者肝纤维化等级[J]. 中华医学超声杂志(电子版), 2023, 20(09): 923-929.
[2] 史博慧, 丁西萍, 王恋, 李茸, 郭萍利, 齐晶, 陈瑶, 郝娜, 任予. 乳腺癌术后皮下积液防治的最佳证据总结[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 277-284.
[3] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[4] 涂家金, 廖武强, 刘金晶, 涂志鹏, 毛远桂. 严重烧伤患者鲍曼不动杆菌血流感染的危险因素及预后分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 491-497.
[5] 王成, 张慧君, 覃凤均, 陈辉. 网状植皮与ReCell表皮细胞种植在深Ⅱ度烧伤治疗中的疗效对比[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 498-502.
[6] 姚咏明. 如何精准评估烧伤脓毒症患者免疫状态[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 552-552.
[7] 中华医学会烧伤外科学分会小儿烧伤学组. 儿童烧伤早期休克液体复苏专家共识(2023版)[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 371-376.
[8] 蔡柔妹, 曾洁梅, 黄伟丽, 谢文敏, 刘燕丹, 吴漫君, 蔡楚燕. 利用QC小组干预降低经烧伤创面股静脉置管导管相关性感染发生率的临床观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 399-404.
[9] 刘星, 吴立胜, 王炜林, 李猛. 远端疝囊残端固定与游离对腹股沟斜疝TAPP术后血清肿的影响研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 550-553.
[10] 王可, 范彬, 李多富, 刘奎. 两种疝囊残端处理方法在经腹腹膜前腹股沟疝修补术中的疗效比较[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 692-696.
[11] 萨仁高娃, 张英霞, 邓伟, 闫诺, 樊宁. 超声引导下鼠肝消融术后组织病理特征的变化规律及影响[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 394-398.
[12] 王小红, 钱晶, 翁文俊, 周国雄, 朱顺星, 祁小鸣, 刘春, 王萍, 沈伟, 程睿智, 秦璟灏. 巯基丙酮酸硫基转移酶调控核因子κB信号介导自噬对重症急性胰腺炎大鼠的影响及机制[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 422-426.
[13] 辛彩焕, 熊辉. 非疫区36例布鲁菌病患者的临床特征及诊疗分析[J]. 中华临床医师杂志(电子版), 2023, 17(9): 927-931.
[14] 王丽芳, 宁武, 丁艳, 张彦霞, 马豆豆, 卢哲敏, 韩芃, 李超然, 王宽婷. 北京市石景山区中学生的血尿酸与血清25(OH)D3水平的相关性研究[J]. 中华临床医师杂志(电子版), 2023, 17(08): 865-869.
[15] 谭睿, 王晶, 於江泉, 郑瑞强. 脓毒症中高密度脂蛋白、载脂蛋白A-I和血清淀粉样蛋白A的作用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(06): 749-753.
阅读次数
全文


摘要