切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2023, Vol. 18 ›› Issue (03) : 197 -203. doi: 10.3877/cma.j.issn.1673-9450.2023.03.004

论著

对肌肉超声在严重烧伤患者肌肉性能评估中应用的效果观察
茹天峰, 戴浩楠, 袁林, 吴坤平, 谢卫国()   
  1. 430060 武汉大学同仁医院暨武汉市第三医院烧伤研究所
  • 收稿日期:2022-10-04 出版日期:2023-06-01
  • 通信作者: 谢卫国
  • 基金资助:
    重大疾病防治科技行动计划(2018-ZX-01S-001); 湖北省卫生健康委员会科研项目(WJ2021M260); 武汉市卫生健康委员会基金项目(WG19B02)

Observation of application for muscle ultrasound in the assessment of muscle performance in severely burned patients

Tianfeng Ru, Haonan Dai, Lin Yuan, Kunping Wu, Weiguo Xie()   

  1. Institute of Burns, Tongren Hospital of Wuhan University & Wuhan Third Hospital, Wuhan 430060, China
  • Received:2022-10-04 Published:2023-06-01
  • Corresponding author: Weiguo Xie
引用本文:

茹天峰, 戴浩楠, 袁林, 吴坤平, 谢卫国. 对肌肉超声在严重烧伤患者肌肉性能评估中应用的效果观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 197-203.

Tianfeng Ru, Haonan Dai, Lin Yuan, Kunping Wu, Weiguo Xie. Observation of application for muscle ultrasound in the assessment of muscle performance in severely burned patients[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2023, 18(03): 197-203.

目的

探究肌肉超声在严重烧伤患者肌肉性能评估中应用的效果观察。

方法

回顾性分析2020年3月至2022年4月武汉大学同仁医院暨武汉市第三医院烧伤科符合入选标准的32例烧伤患者,其中男28例,女4例,年龄29~64(44±8)岁。烧伤面积40%~87%(57.34%±13.09%)TBSA, Ⅲ°烧伤面积4%~66%(27.50%±15.70%)TBSA。致伤原因:化学烧伤11例(34.4%),火焰烧伤15例(46.9%),热液烫伤6例(18.7%)。于入院时、伤后6周、伤后12周采用B型超声诊断仪进行股四头肌最小压力肌肉厚度测量、股四头肌最大压力肌肉厚度测量及股直肌横截面积测量。采用便携式肌力测试仪测量患者最大肌肉力量。对股四头肌各超声参数测量的可信性进行分析。采用Pearson相关分析及Spearman相关性分析对股四头肌超声参数与肌肉力量进行相关性分析。

结果

不同时间点肌肉超声测量股四头肌的超声参数ICC值为0.914~0.997,均大于0.9,具有高可信性。入院时股四头肌最小压力肌肉厚度与肌肉力量存在弱正相关(r=0.457,P=0.009),股四头肌最大压力肌肉厚度及股直肌横截面积与肌肉力量均不存在相关性(r=0.318,P=0.076;r=0.310,P=0.084);伤后6周股四头肌最小压力肌肉厚度与肌肉力量呈中度正相关(r=0.565,P=0.001),股四头肌最大压力肌肉厚度与肌肉力量呈弱正相关(r=0.470,P=0.007),股直肌横截面积与肌肉力量呈高度正相关(r=0.799,P<0.001);伤后12周股四头肌最小压力肌肉厚度与肌肉力量呈中度正相关(r=0.671,P<0.001),股四头肌最大压力肌肉厚度与肌肉力量呈弱正相关(r=0.486,P=0.016),股直肌横截面积与肌肉力量呈高度正相关(r=0.781,P<0.001)。

结论

严重烧伤患者股四头肌肌肉超声相关参数与肌肉力量具有良好的相关性,可以用于评价肌肉性能。在患者无法主观配合,肌肉力量测量不能客观反映其肌肉性能时,肌肉超声可作为肌肉性能评估的补充,但二者结合更为精准。

Objective

To investigate the application of muscle ultrasound in the assessment of muscle performance in patients with severe burns.

Methods

Thirty-two burn patients, including 28 males and 4 females, aged 29-64(44±8)years, who met the inclusion criteria in the burn unit of Tongren Hospital of Wuhan University and the Third Hospital of Wuhan from March 2020 to April 2022 were retrospectively analyzed. The burn area was 40%-87%(57.34%±13.09%) TBSA, Ⅲ° burns were 4%-66%(27.50%±15.70%) TBSA, and the causes of injury were chemical burns in 11 cases (34.4%), flame burns in 15 cases (46.9%), and hot liquid burns in 6 cases (18.7%). The minimum pressure muscle thickness measurement of quadriceps, maximum pressure muscle thickness measurement of quadriceps, and cross-sectional area measurement of rectus femoris were performed at admission, 6 weeks post-injury, and 12 weeks post-injury using a B-type ultrasound diagnostic instrument. A portable muscle strength tester was used to measure the patient's maximum muscle strength. Reliability analysis of the measurement of each ultrasound parameter of the quadriceps muscle was performed. Pearson correlation analysis and Spearman correlation analysis were used to correlate the quadriceps ultrasound parameters with muscle strength.

Results

The ICC values of the ultrasound parameters of the quadriceps muscle measured by muscle ultrasound at different times ranged from 0.914 to 0.997, all of which were greater than 0.9 with high reliability. There was a weak positive correlation between quadriceps minimum pressure muscle thickness and muscle strength at admission (r=0.457, P=0.009), and no correlation between quadriceps maximum pressure muscle thickness and rectus femoris cross-sectional area and muscle strength (r=0.318, P=0.076; r=0.310, P=0.084). At 6 weeks post-injury, quadriceps minimum pressure muscle thickness was moderate positively correlated with muscle strength (r=0.565, P=0.001), quadriceps maximum pressure muscle thickness was weak positively correlated with muscle strength (r=0.470, P=0.007), rectus femoris cross-sectional area was high positively correlated with muscle strength (r=0.799, P<0.001). At 12 weeks post-injury, quadriceps minimum pressure muscle thickness showed a moderate positive correlation with muscle strength (r=0.671, P<0.001), quadriceps maximum pressure muscle thickness showed a weak positive correlation with muscle strength (r=0.486, P=0.016), rectus femoris cross-sectional area showed a high positive correlation with muscle strength (r=0.781, P<0.001).

Conclusion

Ultrasound-related parameters of quadriceps muscle in patients with severe burns have good correlation with muscle strength and can be used to evaluate muscle performance. For patients who can't cooperate subjectively and whose muscle strength measurements can't objectively reflect their muscle performance, muscle ultrasound can be used as a supplement tool to assess muscle performance, but the combination of them is more accurate.

图1 股四头肌肌肉超声测量图示。A示股四头肌最小压力肌肉厚度(Lmin);B示股四头肌最大压力肌肉厚度(Lmax);C示股直肌横截面积
表1 不同时间点股四头肌各超声参数测量的可信性
图2 入院时股四头肌各肌肉超声参数与肌肉力量的相关性。A示入院时股四头肌最小压力肌肉厚度与肌肉力量的相关性;B示入院时股四头肌最大压力肌肉厚度与肌肉力量的相关性;C示入院时股直肌横截面积与肌肉力量的相关性
图3 伤后6周股四头肌各肌肉超声参数与肌肉力量的相关性。A示伤后6周股四头肌最小压力肌肉厚度与肌肉力量的相关性;B示伤后6周股四头肌最大压力肌肉厚度与肌肉力量的相关性;C示伤后6周股直肌横截面积与肌肉力量的相关性
图4 伤后12周股四头肌各肌肉超声参数与肌肉力量的相关性。A示伤后12周股四头肌最小压力肌肉厚度与肌肉力量的相关性;B示伤后12周股四头肌最大压力肌肉厚度与肌肉力量的相关性;C示伤后12周股直肌横截面积与肌肉力量的相关性
[1]
Chinese Burn Association, Chinese Association of Burn Surgeons, Cen Y, et al. Guidelines for burn rehabilitation in China[J]. Burn Trauma, 2015, 3: 20.
[2]
Hardee JP, Porter C, Sidossis LS, et al. Early rehabilitative exercise training in the recovery from pediatric burn[J]. Medicine and Science in Sports and Exercise, 2014, 46(9): 1710-1716.
[3]
Knuth CM, Auger C, Jeschke MG. Burn-induced hypermetabolism and skeletal muscle dysfunction[J]. AJP Cell Physiology, 2021, 321(1): C58-C71.
[4]
Charline T, Laetitia B, Julien L, et al. Reliability of standardized ultrasound measurements of quadriceps muscle thickness in neurological critically ill patients: a comparison to computed tomography measures[J]. Journal of Rehabilitation Medicine, 2020, 52(3): jrm00032.
[5]
Pardo E, El Behi H, Boizeau P, et al. Reliability of ultrasound measurements of quadriceps muscle thickness in critically ill patients[J]. BMC Anesthesiology, 2018, 18(1): 205.
[6]
Gittings PM, Hince DA, Wand BM, et al. Grip and muscle strength dynamometry in acute burn injury: evaluation of an updated assessment protocol[J]. J Burn Care Res, 2018, 39(6): 939-947.
[7]
Pasco JA, Stuart AL, Holloway-Kew KL, et al. Lower-limb muscle strength: normative data from an observational population-based study[J]. BMC Musculoskeletal Disorders, 2020, 21(1): 89.
[8]
Mukaka MM. A guide to appropriate use of correlation coefficient in medical research[J]. Malawi Medical Journal, 2012, 24(3): 69-71.
[9]
Portney LG, Watkins MP. Foundationsof Clinical Research: Applications to Practice[M]. 3rd ed. Upper Saddle River, NJ: Prentice Hall Health, 2009.
[10]
Peck MD. Epidemiology of burns throughout the world. Part I: distribution and risk factors[J]. Burns: Including Thermal Injury, 2011, 37(7). 1087-1100.
[11]
Zhou W, Ma X, Pan L, et al. Application of conventional ultrasound coupled with virtual touch tissue imaging and quantification in the assessment of muscle strength[J]. Annals of Palliative Medicine, 2020, 9(5): 3402-3409.
[12]
Pereira CT, Murphy KD, Herndon DN. Altering metabolism[J]. Journal of Burn Care & Rehabilitation, 2005, 26(3): 194-199.
[13]
原博,刘琰. 严重烧伤后高代谢反应及其应对策略[J]. 中华损伤与修复杂志(电子版), 2021, 16(4): 343-348.
[14]
Herndon DN. Total Burn Care [M]. 4th Edition. Saunders Elsevier, 2012: 355-356.
[15]
舒付婷,罗鹏飞,纪世召,等. 重度烧伤后高代谢特征及临床治疗新进展[J]. 中华损伤与修复杂志(电子版)2019, 14(1): 63-66.
[16]
Hart DW, Wolf SE, Ramzy PI, et al. Anabolic effects of oxandrolone after severe burn[J]. Annals of Surgery, 2001, 233(4): 556-564.
[17]
Chao T, Herndon DN, Porter C, et al. Skeletal muscle protein breakdown remains elevated in pediatric burn survivors up to one-year post-injury[J]. Shock, 2015, 44(5): 397-401.
[18]
Vieira L, Rocha L, Mathur S, et al. Reliability of skeletal muscle ultrasound in critically ill trauma patients[J]. Revista Brasileira de Terapia Intensiva, 2019, 31(4): 464-473.
[19]
Connolly B, MacBean V, Crowley C, et al. Ultrasound for the assessment of peripheral skeletal muscle architecture in critical illness: a systematic review[J]. Critical Care Medicine, 2015, 43(4): 897-905.
[20]
Looijaard W, Dekker I M, Stapel SN, et al. Skeletal muscle quality as assessed by CT-derived skeletal muscle density is associated with 6-month mortality in mechanically ventilated critically ill patients[J]. Critical Care, 2016, 20(1): 386.
[21]
Sponbeck JK, Frandsen CR, Ridge ST, et al. Leg muscle cross-sectional area measured by ultrasound is highly correlated with MRI[J]. Journal of Foot and Ankle Research, 2021, 14(1): 5.
[22]
Lambell KJ, Tierney AC, Wang JC, et al. Comparison of ultrasound-derived muscle thickness with computed tomography muscle cross-sectional area on admission to the intensive care unit: a pilot cross-sectional study[J]. John Wiley & Sons, Ltd, 2021, 45(1): 136-145.
[23]
Neira Álvarez M, Vázquez Ronda MA, Soler Rangel L, et al. Muscle assessment by ultrasonography: agreement with dual-energy X-ray absorptiometry (DXA) and relationship with physical performance[J]. J Nutr Health Aging, 2021, 25(8): 956-963.
[24]
Miyachi R, Koike N, Kodama S, et al. Relationship between trunk muscle strength and trunk muscle mass and thickness using bioelectrical impedance analysis and ultrasound imaging[J]. Bio-medical Materials and Engineering, 2022, 33(1): 31-40.
[25]
Annetta MG, Pittiruti M, Silvestri D, et al. Ultrasound assessment of rectus femoris and anterior tibialis muscles in young trauma patients[J]. Ann Intensive Care, 2017, 7(1): 104.
[26]
Vieira L, Rocha L, Mathur S, et al. Reliability of skeletal muscle ultrasound in critically ill trauma patients[J]. Revista Brasileira de Terapia Intensiva, 2019, 31(4): 464-473.
[27]
宣磊,吴建贤,潘家武. 等速技术在康复医学领域中的研究进展[J]. 中国康复理论与实践2019, 25(7): 5.
[28]
Marmon AR, Pozzi F, Alnahdi AH, et al. The validity of plantarflexor strength measures obtained through hand-held dynamometry measurements of force[J]. Int J Sports Phys Ther, 2013, 8(6): 820-827.
[29]
Vanpee G, Hermans G, Segers J, et al. Assessment of limb muscle strength in critically ill patients: a systematic review[J]. Critical Care Medicine, 2014, 42(3): 701.
[30]
Thomaes T, Thomis M, Onkelinx S, et al. Reliability and validity of the ultrasound technique to measure the rectus femoris muscle diameter in older CAD-patients[J]. BMC Med Imaging, 2012, 12: 7.
[31]
Schieffelers DR, Dombrecht D, Lafaire C, et al. Reliability and feasibility of skeletal muscle ultrasound in the acute burn setting[J], Burns, 2023, 49(1): 68-79.
[1] 贺肖洁, 郑磊磊, 岑航辉, 韩春茂. 重度烧伤患者伤后应激障碍发生的随访研究[J]. 中华危重症医学杂志(电子版), 2023, 16(02): 111-115.
[2] 涂家金, 廖武强, 刘金晶, 涂志鹏, 毛远桂. 严重烧伤患者鲍曼不动杆菌血流感染的危险因素及预后分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 491-497.
[3] 王成, 张慧君, 覃凤均, 陈辉. 网状植皮与ReCell表皮细胞种植在深Ⅱ度烧伤治疗中的疗效对比[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 498-502.
[4] 姚咏明. 如何精准评估烧伤脓毒症患者免疫状态[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 552-552.
[5] 中华医学会烧伤外科学分会小儿烧伤学组. 儿童烧伤早期休克液体复苏专家共识(2023版)[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 371-376.
[6] 蔡柔妹, 曾洁梅, 黄伟丽, 谢文敏, 刘燕丹, 吴漫君, 蔡楚燕. 利用QC小组干预降低经烧伤创面股静脉置管导管相关性感染发生率的临床观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 399-404.
[7] 杨姣, 王玲, 古兰, 安慎通, 胡大海, 韩军涛. 对艾司氯胺酮在烧伤后瘢痕手术患儿静脉穿刺中的应用效果观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 210-216.
[8] 李峰, 黎君友, 冯书堂, 李国平, 杨洁蓉. 对GGTA1/β4GalNT2双基因敲除近交系五指山小型猪皮进行异种移植的效果观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 241-248.
[9] 刘晓彬, 朱峰. 危重烧伤患者肾功能亢进的药物治疗[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 260-264.
[10] 肖仕初. 微型皮移植的创新与应用[J]. 中华损伤与修复杂志(电子版), 2023, 18(02): 184-184.
[11] 李东杰, 贾晓明. 加强研究皮肤低温损伤机制以提高皮肤储存质量[J]. 中华损伤与修复杂志(电子版), 2023, 18(02): 93-97.
[12] 何泽亮, 李锦, 张程亮, 随振阳, 安亮恩, 刘玲玲, 姚媛媛, 张聚磊, 仇树林, 李晓东. 采用超声清创联合负压吸引疗法治疗深度烧伤溶痂创面的临床观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(02): 123-127.
[13] 汤文倩, 徐向阳, 王松, 刘淑华. 运动康复在严重烧伤中的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(02): 169-173.
[14] 王燕, 郭蕊, 王淑杰. 老年烧伤气管切开患者死亡风险诊断模型构建及对策分析[J]. 中华诊断学电子杂志, 2023, 11(04): 249-253.
[15] 高雷, 李全, 巴雅力嘎, 陈强, 侯智慧, 曹胜军, 巴特. 重度烧伤患者血小板外泌体对凝血功能调节作用的初步研究[J]. 中华卫生应急电子杂志, 2023, 09(03): 149-154.
阅读次数
全文


摘要