切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2025, Vol. 20 ›› Issue (02) : 169 -173. doi: 10.3877/cma.j.issn.1673-9450.2025.02.015

综述

脱细胞细胞外基质在皮肤损伤修复中的研究进展
彭巍1, 刘旭1, 刘佳琦1,()   
  1. 1. 710032 西安,空军军医大学第一附属医院全军烧伤中心烧伤与皮肤外科
  • 收稿日期:2024-08-15 出版日期:2025-04-01
  • 通信作者: 刘佳琦
  • 基金资助:
    国家自然科学基金面上项目(82172208)

Research progress of decellularized extracellular matrix in skin injury repair

Wei Peng1, Xu Liu1, Jiaqi Liu1,()   

  1. 1. Department of Burns and Cutaneous Surgery, Burn Center of PLA, the First Affiliated Hospital of Air Force Medical University, Xi'an 710032, China
  • Received:2024-08-15 Published:2025-04-01
  • Corresponding author: Jiaqi Liu
引用本文:

彭巍, 刘旭, 刘佳琦. 脱细胞细胞外基质在皮肤损伤修复中的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(02): 169-173.

Wei Peng, Xu Liu, Jiaqi Liu. Research progress of decellularized extracellular matrix in skin injury repair[J/OL]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2025, 20(02): 169-173.

脱细胞细胞外基质(dECM)是指经过脱细胞处理的细胞外基质,即从组织或器官中去除细胞成分后得到的一种生物材料。 其因独特的物理属性和生化线索,在组织器官的损伤修复中展示出重要潜力。 本文对不同来源dECM 的特点及其在皮肤损伤修复中的应用进行综述,分析dECM的刚度、孔隙率与孔径及表面拓扑形貌等物理特性在皮肤损伤修复中的作用,总结近年来异种来源dECM 的研究进展及其在创面修复中的应用效果,并探讨未来dECM 在组织工程和临床治疗中的发展和面临的挑战。

Decellularized extracellular matrix (dECM) is a type of biological material obtained after the cellular components have been removed from tissues or organs, which is achieved through a decellularization process.Due to its unique physical properties and biochemical cues,it has shown significant potential in the repair of tissue and organ injuries.This article reviews the characteristics of dECM from different sources and its application in skin injury repair,analyzes the role of the physical properties of dECM such as stiffness, porosity, pore size, and surface topography in skin injury repair, summarizes the research progress of allogeneic sources of dECM and their application effects in wound healing, and discusses the future development and challenges of dECM in tissue engineering and clinical therapy.

[1]
Hernández-Rangel A, Silva-Bermudez P, Almaguer-Flores A,et al.Development and characterization of three-dimensional antibacterial nanocomposite sponges of chitosan, silver nanoparticles and halloysite nanotubes [J].RSC Adv, 2024, 14 (34):24910-24927.
[2]
Liu Y, Zhang Y, Yang Q, et al.Tunicate cellulose nanocrystal reinforced multifunctional hydrogel with super flexible, fatigue resistant, antifouling and self-adhesive capability for effective wound healing [J].Int J Bio Macromol, 2024, 277 ( Pt 4):134337.
[3]
Sharma NS, Karan A, Tran HQ, et al.Decellularized extracellular matrix-decorated 3D nanofiber scaffolds enhance cellular responses and tissue regeneration[J].Acta Biomater, 2024,184:81-97.
[4]
Wolff J.Das Gesetz der Transformation der Knochen[M].Berlin:Hirschwald, 1892.
[5]
Koo MA, Jeong H, Hong SH, et al.Preconditioning process for dermal tissue decellularization using electroporation with sonication[J].Regen Biomater, 2022, 9(1):rbab071.
[6]
Nia HT,Liu H,Seano G,et al.Solid stress and elastic energy as measures of tumour mechanopathology[J].Nat Biomed Eng,2016, 1:0004.
[7]
Kryczka J, Boncela J.Leukocytes:the double-edged sword in fibrosis[J].Mediators Inflamm, 2015:652035.
[8]
Huffer A,Ozdemir T.Substrate stiffness regulates type II diabetic fibroblast phenotype and metabolic activity[J].Biochem Biophys Res Commun, 2024, 709:149833.
[9]
Atcha H, Jairaman A, Holt JR, et al.Mechanically activated ion channel Piezo1 modulates macrophage polarization and stiffness sensing[J].Nat Commun, 2021, 12(1):3256.
[10]
Luo P, Huang R, Wu Y, et al.Tailoring the multiscale mechanics of tunable decellularized extracellular matrix (dECM)for wound healing through immunomodulation[J].Bioact Mater,2023, 28:95-111.
[11]
Iqbal MZ, Riaz M, Biedermann T, et al.Breathing new life into tissue engineering:exploring cutting-edge vascularization strategies for skin substitutes[J].Angiogenesis, 2024, 27(4):587-681.
[12]
Huang X, Ding Y, Pan W, et al.A comparative study on two types of porcine acellular dermal matrix sponges prepared by thermal crosslinking and thermal-glutaraldehyde crosslinking matrix microparticles [J].Front Bioeng Biotechnol, 2022,10:938798.
[13]
Chen Y, Liu X, Zheng X, et al.Advances on the modification and biomedical applications of acellular dermal matrices[J].J Leather Sci Eng, 2022, 4(1):19.
[14]
BružauskaitI, BironaitD, Bagdonas E,et al.Scaffolds and cells for tissue regeneration:different scaffold pore sizes-different cell effects[J].Cytotechnology,2016,68(3):355-369.
[15]
Madden LR, Mortisen DJ, Sussman EM, et al.Proangiogenic scaffolds as functional templates for cardiac tissue engineering[J].Proc Natl Acad Sci U S A, 2010, 107 ( 34):15211-15216.
[16]
Li K, Wang H, Yan J, et al.Emulsion-templated gelatin/amino acids/chitosan macroporous hydrogels with adjustable internal dimensions for three-dimensional stem cell culture[J].ACS Biomater Sci Eng, 2024,10(8):4878-4890.
[17]
Chen J, Fan Y, Dong G, et al.Designing biomimetic scaffolds for skin tissue engineering[J].Biomater Sci, 2023, 11(9):3051-3076.
[18]
Asaad M, Kapur SK, Baumann DP, et al.Acellular dermal matrix provides durable long-term outcomes in abdominal wall reconstruction:a study of patients with over 60 months of followup[J].Ann Surg, 2022, 276(5):e563-e570.
[19]
Huang X, Zhu Z, Lu L, et al.Frozen bean curd-inspired xenogeneic acellular dermal matrix with triple pretreatment approach of freeze-thaw, laser drilling and ADSCs pre-culture for promoting early vascularization and integration[J].Regen Biomater, 2022, 9:rbac053.
[20]
Park R, Yoon JW, Lee JH, et al.Phenotypic change of mesenchymal stem cells into smooth muscle cells regulated by dynamic cell-surface interactions on patterned arrays of ultrathin graphene oxide substrates[J].J Nanobiotechnology, 2022, 20(1):17.
[21]
Cho Y, Kim J, Park J, et al.Surface nanotopography and cell shape modulate tumor cell susceptibility to NK cell cytotoxicity[J].Mater Horiz, 2023, 10(10):4532-4540.
[22]
Wang K, Man K, Liu J, et al.Dissecting physical and biochemical effects in nanotopographical regulation of cell behavior[J].ACS Nano, 2023, 17(3):2124-2133.
[23]
Wang XW, Zheng HY, Wang J, et al.Impact of micro-scale regular topography on cell and tissue behaviors[J].Sci China Mater, 2024, 67(7):2090-2102.
[24]
Francone A, Merino S, Retolaza A, et al.Impact of surface topography on the bacterial attachment to micro- and nanopatterned polymer films[J].Surf Interfaces, 2021, 27:101494.
[25]
Li Z, Huang F, Xu Y, et al.Electron-extracting system with enhanced photocatalytic hydrogen production performance:synergistic utilization of Z-scheme and Ohmic heterojunctions[J].Chemical Engineering Journal, 2022, 429:132476.
[26]
Poel WE.Preparation of acellular homogenates from muscle samples[J].Science, 1948, 108(2806):390-391.
[27]
Bello YM, Falabella AF, Eaglstein WH.Tissue-engineered skin.Current status in wound healing[J].Am J Clin Dermatol,2001,2(5):305-313.
[28]
Wang Y, Jiang Y, Ni G, et al.Integrating singlee-cell and spatial transcriptomics reveals heterogeneity of early pig skin development and a subpopulation with hair placode formation[J].Adv Sci (Weinh), 2024, 11(20):2306703.
[29]
Bromberg BE, Song IC, Mohn MP.The use of pig skin as a temporary biological dressing[J].Plast Reconstr Surg, 1965,36:80-90.
[30]
鲁开化.我国何时开始用猪皮移植治疗烧伤? [J].中华整形外科杂志, 1986, 2(4):290.
[31]
Livesey SA, Herndon DN, Hollyoak MA, et al.Transplanted acellular allograft dermal matrix.Potential as a template for the reconstruction of viable dermis[J].Transplantation, 1995, 60(1):1-9.
[32]
Petrie K, Cox CT, Becker BC, et al.Clinical applications of acellular dermal matrices:a review[J].Scars Burn Heal,2022,8:20595131211038310.
[33]
Cai D, Chen S, Wu B, et al.Construction of multifunctional porcine acellular dermal matrix hydrogel blended with vancomycin for hemorrhage control, antibacterial action, and tissue repair in infected trauma wounds[J].Materials Today Bio,2021, 12:100127.
[34]
Hsieh CM, Wang W, Chen YH, et al.A novel composite hydrogel composed of formic acid-decellularized pepsin-soluble extracellular matrix hydrogel and sacchachitin hydrogel as wound dressing to synergistically accelerate diabetic wound healing[J].Pharmaceutics, 2020, 12(6):538.
[35]
Chen L, Li Z, Zheng Y, et al.3D-printed dermis-specific extracellular matrix mitigates scar contraction via inducing early angiogenesis and macrophage M2 polarization[J].Bioact Mater,2022, 10:236-246.
[36]
Esmaeili A, Rahimi A, Abbasi A, et al.Processing and postprocessing of fish skin as a novel material in tissue engineering[J].Tissue Cell, 2023, 85:102238.
[37]
Lau CS, Hassanbhai A, Wen F, et al.Evaluation of decellularized tilapia skin as a tissue engineering scaffold[J].J Tissue Eng Regen Med, 2019, 13(10):1779-1791.
[38]
Kotronoulas A, Jónasdóttir HS, Sigurðardóttir RS, et al.Wound healing grafts:omega-3 fatty acid lipid content differentiates the lipid profiles of acellular Atlantic cod skin from traditional dermal substitutes[J].J Tissue Eng Regen Med, 2020,14 (3):441-451.
[39]
Kotronoulas A, de Lomana ALG, Einarsdóttir HK, et al.Fish skin grafts affect adenosine and methionine metabolism during burn wound healing [J].Antioxidants (Basel), 2023, 12(12):2076.
[40]
Yoon J,Yoon D,Lee H,et al.Wound healing ability of acellular fish skin and bovine collagen grafts for split-thickness donor sites in burn patients:characterization of acellular grafts and clinical application[J].Int J Biol Macromol,2022,205:452-461.
[41]
Michael S, Winters C, Khan M.Acellular fish skin graft use for diabetic lower extremity wound healing:a retrospective study of 58 ulcerations and a literature review[J].Wounds, 2019,31(10):262-268.
[42]
Luze H, Nischwitz SP, Smolle C, et al.The use of acellular fish skin grafts in burn wound management-a systematic review[J].Medicina, 2022, 58(7):912.
[43]
Fiakos G, Kuang Z, Lo E.Improved skin regeneration with acellular fish skin grafts[J].Engineered Regeneration,2020,1:95-101.
[44]
Lin X, Zhang H, Zhang H, et al.Bio-printed hydrogel textiles based on fish skin decellularized extracellular matrix for wound healing[J].Engineering, 2023, 25(6):120-127.
[45]
Lee H, Chun W, Kim G.Three-dimensional artificial skin construct bioprinted with a marine-based biocomposite [ J].Biomacromolecules, 2023, 24(6):2864-2878.
[46]
Ahmed R, Haq M, Chun BS.Characterization of marine derived collagen extracted from the by-products of bigeye tuna (Thunnus obesus) [J].Int J Biol Macromol, 2019, 135:668-676.
[47]
Choi SH, Lee K, Han H, et al.Prochondrogenic effect of decellularized extracellular matrix secreted from human induced pluripotent stem cell-derived chondrocytes[J].Acta Biomater,2023, 167:234-248.
[48]
Fonseca VC, Van V, Ip BC.Primary human cell-derived extracellular matrix from decellularized fibroblast microtissues with tissue-dependent composition and microstructure [ J].bioRxiv, 2023:553420.
[49]
Matveeva D,Buravkov S,Andreeva E,et al.Hypoxic extracellular matrix preserves its competence after expansion of human MSCs under physiological hypoxia in vitro[J].Biomimetics (Basel),2023, 8(6):476.
[50]
Kwon JW,Savitri C,An B,et al.Mesenchymal stem cell-derived secretomes-enriched alginate/extracellular matrix hydrogel patch accelerates skin wound healing[J].Biomater Res, 2023, 27(1):107.
[51]
Chiang CE, Fang YQ, Ho CT, et al.Bioactive decellularized extracellular matrix derived from 3D stem cell spheroids under macromolecular crowding serves as a scaffold for tissue engineering[J].Adv Healthc Mater,2021,10(11):e2100024.
[1] 陈严城, 符培亮. 组织工程技术在骨软骨缺损中应用的研究进展[J/OL]. 中华关节外科杂志(电子版), 2023, 17(03): 376-384.
[2] 钱嘉天, 符培亮. 3D打印脱细胞的细胞外基质修复软骨缺损的研究进展[J/OL]. 中华关节外科杂志(电子版), 2023, 17(03): 368-375.
[3] 陈曦, 刘畅, 李萍, 李雨航, 陈彦斌, 王昆. 肩峰下滑囊的解剖结构和功能与临床意义[J/OL]. 中华关节外科杂志(电子版), 2022, 16(03): 337-342.
[4] 关丁丁, 李伟, 孔维诗, 包郁露, 孙瑜. 负载干细胞的光交联蛋白基水凝胶在组织工程中应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 447-452.
[5] 王雪, 程微, 苏建东. 微针法表皮移植应用的新进展[J/OL]. 中华损伤与修复杂志(电子版), 2023, 18(03): 270-273.
[6] 蒯贤东, 郑国爽, 杨佳慧, 赵德伟. 用于关节软骨缺损修复的壳聚糖复合支架的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2022, 17(06): 535-539.
[7] 刘梦柔, 刘沛东, 张城铭, 刘阳, 李鹏翠, 杨自权. 基于文献计量学与可视化分析的骨组织工程支架材料的全球研究现状及发展趋势[J/OL]. 中华损伤与修复杂志(电子版), 2022, 17(05): 411-420.
[8] 王湘滔, 张爱娟, 王万春, 王芳萍, 徐颖婕, 孟洋. 中药白及在口腔疾病中的研究与应用[J/OL]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 371-375.
[9] 孙艺琪, 史宏灿. 纳米技术在气管移植物中的应用[J/OL]. 中华移植杂志(电子版), 2022, 16(05): 309-313.
[10] 钟文文, 李科, 刘碧好, 蔡炳, 脱颖, 叶雷, 马波, 瞿虎, 汪中扬, 王德娟, 邱剑光. 不同比例聚乳酸/丝素蛋白复合支架在兔尿道缺损修复中的疗效[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 516-522.
[11] 万周程, 钟章锋, 钟侨霖, 王景浩, 刘婷, 王华军, 郑小飞. 中药有效成分结合生物材料在骨组织工程中作用的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 249-253.
[12] 林诗雯, 孙慧, 陈娜娜, 朱聪. 共培养促神经化策略在组织工程骨构建中的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2022, 12(05): 293-299.
[13] 张郭, 慈海, 周牧冉, 孙家明, 郭亮. 仿生聚己内酯支架用于乳房组织工程的可行性研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2022, 12(04): 215-223.
[14] 周莹芊, 汪振星, 张一帆, 孙家明, 曹谊林. 模块化与血管化组织工程技术[J/OL]. 中华细胞与干细胞杂志(电子版), 2022, 12(03): 161-166.
[15] 杜凯玥, 袁博伟, 洪晶. 水凝胶在角膜修复中的应用研究进展[J/OL]. 中华眼科医学杂志(电子版), 2022, 12(05): 298-304.
阅读次数
全文


摘要