切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2025, Vol. 20 ›› Issue (05) : 442 -446. doi: 10.3877/cma.j.issn.1673-9450.2025.05.013

综述

脂肪干细胞及其衍生物在不同创面愈合中应用的研究进展
黄宇哲, 吴镔莎()   
  1. 400030 重庆,陆军军医大学第二附属医院整形外科
  • 收稿日期:2025-07-11 出版日期:2025-10-01
  • 通信作者: 吴镔莎

Research progress on the application of adipose-derived stem cells and their derivatives in different wound healing

Yuzhe Huang, Binsha Wu()   

  1. Department of Plastic and Cosmetic Surgery,the Second Affiliated Hospital of Army Medical University,Chongqing 400030,China
  • Received:2025-07-11 Published:2025-10-01
  • Corresponding author: Binsha Wu
引用本文:

黄宇哲, 吴镔莎. 脂肪干细胞及其衍生物在不同创面愈合中应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(05): 442-446.

Yuzhe Huang, Binsha Wu. Research progress on the application of adipose-derived stem cells and their derivatives in different wound healing[J/OL]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2025, 20(05): 442-446.

创面愈合是一个由多种细胞相互作用及复杂信号转导网络共同调控的过程。当局部微环境发生紊乱时,创面愈合延缓甚至不愈合,难愈性创面仍是目前临床上面临的一大挑战。脂肪干细胞来源丰富、获取方便,且具备强大的旁分泌功能和多向分化潜能,在创面修复与再生中发挥着重要作用。通过对脂肪干细胞的生物学特性、衍生物的种类和特点以及在不同创面愈合中的应用进行综述,旨在为干细胞疗法在创面治疗领域的后续研究提供新思路。

Wound healing is regulated by the interactions of various cells and a complex network of signaling pathways. When the local microenvironment is dysregulated,wound healing can be delayed or even fail to occur,and refractory wounds remain a major clinical challenge. Adipose-derived stem cells (ADSCs),which are abundant and easily accessible,possess strong paracrine functions and multi-directional differentiation potential,playing a crucial role in wound repair and regeneration. This article reviews the biological characteristics of adipose-derived stem cells,the types and features of their derivatives,and their applications in different types of wound healing,aiming to provide new insights for future research on stem cell therapy in wound healing.

[1]
Zhou CZhang BYang Y,et al. Stem cell-derived exosomes: emerging therapeutic opportunities for wound healing[J]. Stem Cell Res Ther202314(1):107.
[2]
Mascharak STalbott HEJanuszyk M,et al. Multi-omic analysis reveals divergent molecular events in scarring and regenerative wound healing[J]. Cell Stem Cell202229(2):315-327. e6.
[3]
Xiong SZhang JZhao Z,et al. NORAD accelerates skin wound healing through extracellular vesicle transfer from hypoxic adipose derived stem cells: miR-524-5p pathway and Pumilio protein mechanism[J]. Int J Biol Macromol2024279(Pt 4):135621.
[4]
Wu BLiu CWang T,et al. Comparison of the difference in the stemness changes of adipose-derived stem cell and dedifferentiated fat cell after fat transplantation: in vivo and in vitro evidence[J]. Aesthetic Plast Surg202549(14):4067-4081.
[5]
Cossu GBirchall MBrown T,et al. Lancet commission: stem cells and regenerative medicine[J]. Lancet2018391(10123):883-910.
[6]
Mohamed-Ahmed SFristad ILie SA,et al. Adipose-derived and bone marrow mesenchymal stem cells: a donor-matched comparison[J]. Stem Cell Res Ther20189(1):168.
[7]
Zhang LYu ZLiu S,et al. Advanced progress of adipose-derived stem cells-related biomaterials in maxillofacial regeneration[J]. Stem Cell Res Ther202516(1):110.
[8]
Al-Ghadban SBunnell BA. Adipose tissue-derived stem cells: immunomodulatory effects and therapeutic potential[J]. Physiology (Bethesda)202035(2):125-133.
[9]
Han JLi XLiang B,et al. Transcriptome profiling of differentiating adipose-derived stem cells across species reveals new genes regulating adipogenesis[J]. Biochim Biophys Acta Mol Cell Biol Lipids20231868(10):159378.
[10]
Huayllani MTSarabia-Estrada RRestrepo DJ,et al. Adipose-derived stem cells in wound healing of full-thickness skin defects: a review of the literature[J]. J Plast Surg Hand Surg202054(5):263-279.
[11]
Mazini LRochette LAdmou B,et al. Hopes and limits of adipose-derived stem cells (ADSCs) and mesenchymal stem cells (MSCs) in wound healing[J]. Int J Mol Sci202021(4):1306.
[12]
Czerwiec KZawrzykraj MDeptuła M,et al. Adipose-derived mesenchymal stromal cells in basic research and clinical applications[J]. Int J Mol Sci202324(4):3888.
[13]
Stojanović SNajman S. The effect of conditioned media of stem cells derived from lipoma and adipose tissue on macrophages' response and wound healing in indirect co-culture system in vitro[J]. Int J Mol Sci201920(7):1671.
[14]
Horie THirata HSakamoto T,et al. Multiomics analyses reveal adipose-derived stem cells inhibit the inflammatory response of M1-like macrophages through secreting lactate[J]. Stem Cell Res Ther202415(1):485.
[15]
Zuccarini MGiuliani PDi Liberto V,et al. Adipose stromal/stem cell-derived extracellular vesicles: potential next-generation anti-obesity agents[J]. Int J Mol Sci202223(3):1543.
[16]
Yang SSun YYan C. Recent advances in the use of extracellular vesicles from adipose-derived stem cells for regenerative medical therapeutics[J]. J Nanobiotechnology202422(1):316.
[17]
Zhang BWu YMori M,et al. Adipose-derived stem cell conditioned medium and wound healing: a systematic review[J]. Tissue Eng Part B Rev202228(4):830-847.
[18]
Cai YLi JJia C,et al. Therapeutic applications of adipose cell-free derivatives: a review[J]. Stem Cell Res Ther202011(1):312.
[19]
Phillips MITang YL. Genetic modification of stem cells for transplantation[J]. Adv Drug Deliv Rev200860(2):160-172.
[20]
Chen JGZhang ECWan YY,et al. Engineered hsa‐miR‐455‐3p‐abundant extracellular vesicles derived from 3D‐cultured adipose mesenchymal stem cells for tissue‐engineering hyaline cartilage regeneration[J]. Adv Healthc Mater202413(18):e2304194.
[21]
Perez-Estenaga IProsper FPelacho B. Allogeneic mesenchymal stem cells and biomaterials: the perfect match for cardiac repair?[J]. Int J Mol Sci201819(10):3236.
[22]
Song YYou YXu X,et al. Adipose‐derived mesenchymal stem cell‐derived exosomes biopotentiated extracellular matrix hydrogels accelerate diabetic wound healing and skin regeneration[J]. Adv Sci (Weinh)202310(30):e2304023.
[23]
Dai RWang ZSamanipour R,et al. Adipose‐derived stem cells for tissue engineering and regenerative medicine applications[J]. Stem Cells Int20162016:6737345.
[24]
Gentile PGarcovich S. Systematic review: adipose-derived mesenchymal stem cells,platelet-rich plasma and biomaterials as new regenerative strategies in chronic skin wounds and soft tissue defects[J]. Int J Mol Sci202122(4):1538.
[25]
Fakiha K. Adipose stromal vascular fraction: a promising treatment for severe burn injury[J]. Hum Cell202235(5):1323-1337.
[26]
Yuan YShen SFan D. A physicochemical double cross-linked multifunctional hydrogel for dynamic burn wound healing: shape adaptability,injectable self-healing property and enhanced adhesion[J]. Biomaterials2021276:120838.
[27]
Jeschke MGRehou SMcCann MR,et al. Allogeneic mesenchymal stem cells for treatment of severe burn injury[J]. Stem Cell Res Ther201910(1):337.
[28]
Amini-Nik SDolp REylert G,et al. Stem cells derived from burned skin-the future of burn care[J]. EBioMedicine201837:509-520.
[29]
Huang LBurd A. An update review of stem cell applications in burns and wound care[J]. Indian J Plast Surg201245(2):229-236.
[30]
Franck CLSenegaglia ACLeite LMB,et al. Influence of adipose tissue-derived stem cells on the burn wound healing process[J]. Stem Cells Int20192019:2340725.
[31]
Li SZhao CShang G,et al. α-ketoglutarate preconditioning extends the survival of engrafted adipose-derived mesenchymal stem cells to accelerate healing of burn wounds[J]. Exp Cell Res2024439(1):114095.
[32]
Wu YLiang THu Y,et al. 3D bioprinting of integral ADSCs-NO hydrogel scaffolds to promote severe burn wound healing[J]. Regen Biomater20218(3):rbab014.
[33]
Shahmohammadi ASamadian HHeidari Keshel S,et al. Burn wound healing using adipose-derived mesenchymal stem cells and manganese nanoparticles in polycaprolactone/gelatin electrospun nanofibers in rats[J]. Bioimpacts202414(5):30193.
[34]
Filip RLinea MMaj-Lis T,et al. Safety & efficacy of adipose-derived stem cells in acute burns: a randomized placebo-controlled phase-I trial(ASCAB)[J]. J Burn Care Res202445(Supple 1):74–75.
[35]
Yu FXLee PSYYang L,et al. The impact of sensory neuropathy and inflammation on epithelial wound healing in diabetic corneas[J]. Prog Retin Eye Res202289:101039.
[36]
van Netten JJBus SAApelqvist J,et al. Definitions and criteria for diabetes‐related foot disease (IWGDF 2023 update)[J]. Diabetes Metab Res Rev202440(3):e3654.
[37]
Armstrong DGBoulton AJMBus SA. Diabetic foot ulcers and their recurrence[J]. N Engl J Med2017376(24):2367-2375.
[38]
Shi YWang SWang K,et al. Relieving macrophage dysfunction by inhibiting SREBP2 activity: a hypoxic mesenchymal stem cells‐derived exosomes loaded multifunctional hydrogel for accelerated diabetic wound healing[J]. Small202420(25):e2309276.
[39]
Xu JLiu XZhao F,et al. HIF1α overexpression enhances diabetic wound closure in high glucose and low oxygen conditions by promoting adipose-derived stem cell paracrine function and survival[J]. Stem Cell Res Ther202011(1):148.
[40]
Ouyang LQiu DFu X,et al. Overexpressing HPGDS in adipose-derived mesenchymal stem cells reduces inflammatory state and improves wound healing in type 2 diabetic mice[J]. Stem Cell Res Ther202213(1):395.
[41]
Yin DShen G. Exosomes from adipose‐derived stem cells regulate macrophage polarization and accelerate diabetic wound healing via the circ‐Rps5/miR‐124‐3p axis[J]. Immun Inflamm Dis202412(6):e1274.
[42]
Xie YNi XWan X,et al. KLF5 enhances CXCL12 transcription in adipose-derived stem cells to promote endothelial progenitor cells neovascularization and accelerate diabetic wound healing[J]. Cell Mol Biol Lett202530(1):24.
[43]
Li YLi DYou L,et al. dCas9-Based PDGFR–β activation ADSCs accelerate wound healing in diabetic mice through angiogenesis and ECM remodeling[J]. Int J Mol Sci202324(6):5949.
[44]
Cianfarani FToietta GDi Rocco G,et al. Diabetes impairs adipose tissue–derived stem cell function and efficiency in promoting wound healing[J]. Wound Repair Regen201321(4):545-553.
[45]
Tseng SLKang LLi ZJ,et al. Adipose-derived stem cells in diabetic foot care: bridging clinical trials and practical application[J]. World J Diabetes202415(6):1162-1177.
[46]
Mrozikiewicz-Rakowska BSzabłowska-Gadomska ICysewski D,et al. Allogenic adipose-derived stem cells in diabetic foot ulcer treatment: clinical effectiveness,safety,survival in the wound site,and proteomic impact[J]. Int J Mol Sci202324(2):1472.
[47]
Uzun EGüney AGönen ZB,et al. Intralesional allogeneic adipose-derived stem cells application in chronic diabetic foot ulcer: phase I/2 safety study[J]. Foot Ankle Surg202127(6):636-642.
[48]
Huang YZGou MDa LC,et al. Mesenchymal stem cells for chronic wound healing: current status of preclinical and clinical studies[J]. Tissue Eng Part B Rev202026(6):555-570.
[49]
Peng QQian YXiao X,et al. Advancing chronic wound healing through electrical stimulation and adipose‐derived stem cells[J]. Adv Healthc Mater202514(10):e2403777.
[50]
Visconti AJSola OIRaghavan PV. Pressure injuries prevention,evaluation,and management[J]. Am Fam Physician2023108(2):166-174.
[51]
Zuniga JMungai MChism L,et al. Pressure ulcer prevention and treatment interventions in Sub-Saharan Africa: a systematic review[J]. Nurs Outlook202472(3):102151.
[52]
Mervis JSPhillips TJ. Pressure ulcers: pathophysiology,epidemiology,risk factors,and presentation[J]. J Am Acad Dermatol201981(4):881-890.
[53]
Jin CZhao RHu W,et al. Topical hADSCs-HA gel promotes skin regeneration and angiogenesis in pressure ulcers by paracrine activating PPARβ/δ pathway[J]. Drug Des Devel Ther202418:4799-4824.
[54]
Su YHuang ZChen Y,et al. Exosomes from miR-21-5p-modified adipose-derived stem cells promote wound healing by regulating M2 macrophage polarization in a rodent model of pressure ulcer[J]. J Mol Histol202556(3):135.
[55]
Schul MWMelin MMKeaton TJ. Venous leg ulcers and prevalence of surgically correctable reflux disease in a national registry[J]. J Vasc Surg Venous Lymphat Disord202311(3):511-516.
[56]
Probst SBobbink PSéchaud L,et al. Venous leg ulcer recurrences – the relationship to self‐efficacy,social support and quality of life – a mixed method study[J]. J Adv Nurs202177(1):367-375.
[57]
John JTate SPrice A. Non-surgical treatment for arterial leg ulcers: a narrative review[J]. J Wound Care202231(11):969-978.
[58]
Elsharkawi MGhoneim BWestby D,et al. Adipose-derived stem cells in patients with venous ulcers: systematic review[J]. Vascular202331(5):989-993.
[59]
Holm JSToyserkani NMSorensen JA. Adipose-derived stem cells for treatment of chronic ulcers: current status[J]. Stem Cell Res Ther20189(1):142.
[60]
Feng ZZhang YYang C,et al. Bioinspired and inflammation‐modulatory glycopeptide hydrogels for radiation‐induced chronic skin injury repair[J]. Adv Healthc Mater202312(1):e2201671.
[61]
Shen JJiao WYang J,et al. In situ photocrosslinkable hydrogel treats radiation-induced skin injury by ROS elimination and inflammation regulation[J]. Biomaterials2025314:122891.
[62]
Lin ZShibuya YImai Y,et al. Therapeutic potential of adipose-derived stem cell-conditioned medium and extracellular vesicles in an in vitro radiation-induced skin injury model[J]. Int J Mol Sci202324(24):17214.
[63]
Yao WDZhou JNTang C,et al. Hydrogel microneedle patches loaded with stem cell mitochondria-enriched microvesicles boost the chronic wound healing[J]. ACS Nano202418(39):26733-26750.
[64]
Zhu YLiu XChen X,et al. Adipose-derived stem cells apoptosis rejuvenate radiation-impaired skin in mice via remodeling and rearranging dermal collagens matrix[J]. Stem Cell Res Ther202415(1):324.
[1] 张子远, 姜笃银. 基于网络药理学和分子对接探讨沙棘促进烧烫伤创面修复的作用机制[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(05): 404-411.
[2] 赵向阳, 赵静, 陈宝莉, 王志娟, 薛驰, 王芬, 焦晓春, 王立娜, 周琴. 慢性难愈合创面操作性疼痛非药物镇痛管理的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(05): 436-441.
[3] 金方, 汤宋佳, 韩春茂, 王新刚, 张惟. 脂肪组织及其衍生物在皮肤修复与再生中的应用[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(04): 352-357.
[4] 高仪轩, 张筱伟, 李宝龙, 胡文治, 郝永红, 邹晓防. 对全厚微粒皮移植治疗自身免疫病相关性溃疡的临床疗效分析[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(04): 290-295.
[5] 刘昌玲, 张金丽, 张志, 李孝建, 汤文彬, 胡逸萍, 陈宾, 谢晓娜. 负载人脂肪干细胞外泌体的甲基丙烯酰化明胶水凝胶对人皮肤成纤维细胞增殖和迁移的影响[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 517-525.
[6] 程宇欣, 张伟, 孔维诗, 孙瑜. 胶原蛋白敷料在创面修复中应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(01): 73-77.
[7] 周子慧, 李恭驰, 李炳辉, 王知, 刘慧真, 王卉, 邹利军. 细胞自噬在创面愈合中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2023, 18(06): 542-546.
[8] 陈继秋, 朱世辉. 皮肤牵张装置的临床应用现状[J/OL]. 中华损伤与修复杂志(电子版), 2023, 18(05): 451-453.
[9] 贾蔓箐, 卞婧, 周业平. 对小剂量胰岛素局部注射促进脂肪干细胞移植成活及改善糖尿病创面愈合临床观察[J/OL]. 中华损伤与修复杂志(电子版), 2023, 18(04): 312-316.
[10] 侯义振, 张鲲, 卢仙明, 张小雷. 膀胱造瘘导致巨大膀胱结石一例报告[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 259-261.
[11] 杨睿宇, 黄平平. 干细胞及其衍生物治疗下肢缺血的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2023, 13(06): 377-382.
[12] 张昊悦, 朱慧婷, 吴鸿浩, 王业皇, 嵇灵, 王雅娴, 章阳. 主动灌洗引流技术应用于高位复杂性肛瘘手术后创面的前瞻性、多中心、随机对照研究[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(01): 62-70.
[13] 马红, 陈祎琦, 张艺馨, 任杨, 蔡玉辉, 王磊, 朱兴华, 张逸. 可注射型富血小板纤维蛋白联合人工真皮在慢性难愈合创面治疗中的应用研究[J/OL]. 中华临床医师杂志(电子版), 2024, 18(10): 917-925.
[14] 李林宇, 崔世超, 杨晓晖, 曹艺巍, 林存智. 630 nm激光联合血卟啉衍生物治疗晚期支气管肺癌的近期临床疗效分析[J/OL]. 中华临床医师杂志(电子版), 2024, 18(02): 133-138.
[15] 滕振, 闫波. 转录因子HAND1基因多态性在心血管疾病中的研究进展[J/OL]. 中华诊断学电子杂志, 2023, 11(01): 5-11.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?