[1] |
Freeman AK, Sumathi VP, Jeys L. Metastatic tumours of bone[J]. Surgery (United Kingdom), 2015, 33(1): 34-39.
|
[2] |
Ralston SH. Bone structure and metabolism[J]. Medicine, 2013, 41(10): 581-585.
|
[3] |
Nakashima T, Hayashi M, Fukunaga T, et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression[J]. Nat Med, 2011, 17(10): 1231-1234.
|
[4] |
Aoyama E, Kubota S, Khattab HM, et al. CCN2 enhances RANKL-induced osteoclast differentiation via direct binding to RANK and OPG[J]. Bone, 2015, 73: 242-248.
|
[5] |
Nishida T, Emura K, Kubota S, et al. CCN family 2/connective tissue growth factor (CCN2/CTGF) promotes osteoclastogenesis via induction of and interaction with dendritic cell-specific transmembrane protein (DC-STAMP)[J]. J Bone Miner Res, 2011, 26(2): 351-363.
|
[6] |
Nozawa K, Fujishiro M, Kawasaki M, et al. Connective tissue growth factor promotes articular damage by increased osteoclastogenesis in patients with rheumatoid arthritis[J]. Arthritis Res Ther, 2009, 11 (6): R174.
|
[7] |
Ren W, Sun X, Wang K, et al. BMP9 inhibits the bone metastasis of breast cancer cells by downregulating CCN2 (connective tissue growth factor, CTGF) expression[J]. Mol Biol Rep, 2014, 41(3): 1373-1383.
|
[8] |
Wilson SR, Peters C, Saftig P, et al. Cathepsin K activity-dependent regulation of osteoclast actin ring formation and bone resorption[J]. J Biol Chem, 2009, 284(4): 2584-2592.
|
[9] |
Compton JT, Lee FY. A review of osteocyte function and emerging importance of sclerostin[J]. J Bone Joint Surg Am, 2014, 96(19): 1659-1668.
|
[10] |
Nagy V, Penninger JM. The RANKL-RANK Story[J]. Gerontology, 2015, 61(6): 534-542.
|
[11] |
Bussard KM, Gay CV, Mastro AM. The bone microenvironment in metastasis; what is special about bone?[J]. Cancer Metastasis Rev, 2008, 27(1): 41-55.
|
[12] |
Lipton A. Implications of bone metastases and the benefits of bone-targeted therapy[J]. Semin Oncol, 2010, 37(suppl 2): S15-S29.
|
[13] |
Azim HA, Peccatori FA, Brohée S, et al. RANK-ligand (RANKL) expression in young breast cancer patients and during pregnancy[J]. Breast Cancer Res, 2015, 17(1): 24.
|
[14] |
Ibrahim T, Sacanna E, Gaudio M, et al. Role of RANK, RANKL, OPG and CXCR4 tissue markers in predicting bone metastases in breast cancer patients[J]. Clin Breast Cancer, 2011, 11(6): 369-375.
|
[15] |
Sänger N, Ruckhäberle E, Bianchini G, et al. OPG and PgR show similar cohort specific effects as prognostic factors in ER positive breast cancer[J]. Mol Oncol, 2014, 8(7): 1196-1207.
|
[16] |
Clézardin P. The role of RANK/RANKL/osteoprotegerin (OPG) triad in cancer-induced bone diseases: Physiopathology and clinical implications[J]. Bulletin du Cancer, 2011, 98(7): 837-846.
|
[17] |
Roodman GD. Mechanisms of bone metastasis[J]. N Engl J Med, 2004, 350(16): 1655-1664, 1698.
|
[18] |
Wang H, Shen W, Hu X, et al. Quetiapine inhibits osteoclastogenesis and prevents human breast cancer-induced bone loss through suppression of the RANKL-mediated MAPK and NF-κB signaling pathways[J]. Breast Cancer Res Treat, 2015, 149(3): 705-714.
|
[19] |
Sheen YY, Kim MJ, Park SA, et al. Targeting the transforming growth factor-β signaling in cancer therapy[J]. Biomol Ther (Seoul), 2013, 21(5): 323-331.
|
[20] |
VJuárez P, Guise TA. TGF-beta in cancer and bone: implications for treatment of bone metastases[J]. Bone, 2011, 48(1): 23-29.
|
[21] |
Li Y, Drabsch Y, Pujuguet P, et al. Genetic depletion and pharmacological targeting of αv integrin in breast cancer cells impairs metastasis in zebrafish and mouse xenograft models[J]. Breast Cancer Res, 2015, 17: 28.
|
[22] |
Luis-Ravelo D, Antón I, Vicent S, et al. Divergent effects of TGF-β inhibition in bone metastases in breast and lung cancer[J]. Rev Osteoporos Metab Mineral, 2013, 5(2): 79-84.
|
[23] |
Ibaragi S, Shimo T, Iwamoto M, et al. Parathyroid hormone-related peptide regulates matrix metalloproteinase-13 gene expression in bone metastatic breast cancer cells[J]. Anticancer Res, 2010, 30(12): 5029-5036.
|
[24] |
Luco AL, Li J, Ochietti B, et al. Parathyroid hormone-related peptide (PTHrP) blockade inhibits the development of bone metastasis and potentiates the effect of zoledronic acid in vitro and in vivo in a mouse model of breast tumor progression[J]. J Bone Miner Res, 2013, (28 Suppl 1).
|
[25] |
Ibrahim T, Flamini E, Mercatali L, et al. Pathogenesis of osteoblastic bone metastases from prostate cancer[J]. Cancer, 2010, 116(6): 1406-1418.
|
[26] |
Nguyen DX, Chiang AC, Zhang XH, et al. WNT/TCF signaling through LEF1 and HOXB 9 mediates lung adenocarcinoma metastasis[J]. Cell, 2009, 138(1): 51-62.
|
[27] |
Gkotzamanidou M, Dimopoulos MA, Kastritis E, et al. Sclerostin: A possible target for the management of cancer-induced bone disease[J]. Expert Opin Ther Targets, 2012, 16(8): 761-769.
|
[28] |
Rachner TD, Göbel A, Benad-Mehner P, et al. Dickkopf-1 as a mediator and novel target in malignant bone disease[J]. Cancer Lett, 2014, 346(2): 172-177.
|
[29] |
Thudi NK, Martin CK, Murahari S, et al. Dickkopf-1 (DKK-1) stimulated prostate cancer growth and metastases and inhibited bone formation in osteoblastic bone metastases[J]. Prostate, 2011, 71(6): 615-625.
|
[30] |
Todenhöfer T, Leidenberger P, Hennenlotter J, et al. Systemic alterations of Wnt Inhibitors in patients with prostate cancer and bone metastases[J]. Eur Urol, 2014, 13(1): e114.
|
[31] |
D′ Amelio P, Roato I, Oderda M, et al. DKK-1 in prostate cancer diagnosis and follow up[J]. BMC Clin Pathol, 2014, 14(1): 11.
|
[32] |
Zhang H, Yu C, Dai J, et al. Parathyroid hormone-related protein inhibits DKK1 expression through c-Jun-mediated inhibition of β-catenin activation of the DKK1 promoter in prostate cancer[J]. Oncogene, 2014, 33(19): 2464-2477.
|
[33] |
Irani S, Salajegheh A, Smith RA, et al. A review of the profile of endothelin axis in cancer and its management[J]. Crit Rev Oncol Hematol, 2014, 89(2): 314-321.
|
[34] |
Bagnato A, Loizidou M, Pflug BR, et al. Role of the endothelin axis and its antagonists in the treatment of cancer[J]. British J Pharmacol, 2011, 163(2): 220-233.
|
[35] |
Yonou H, Horiguchi Y, Ohno Y, et al. Prostate-specific antigen stimulates osteoprotegerin production and inhibits receptor activator of nuclear factor-kappaB ligand expression by human osteoblasts[J]. Prostate, 2007, 67(8): 840-848.
|
[36] |
Ziaee S, Chung LWK. RANK-and AR-mediated signaling axes in prostate cancer metastasis[J]. Cancer Res, 2015, 75(Suppl 1).
|
[37] |
Kuchimaru T, Kadonosono T, Kondoh SK. Bone resorption facilitates osteoblastic bone metastatic colonization by the functional cooperation between IGF signaling and hypoxia-inducible factor[J]. Mol Imaging Biol, 2015, 17(Suppl 1).
|
[38] |
Jin R, Sterling JA, Edwards JR, et al. Activation of NF-kappa B signaling promotes growth of prostate cancer cells in bone[J]. PLoS One, 2013, 8(4): e60983.
|