[1] |
Mohapatra A, Boitet A, Malak O, et al. Peroneal bypass versus endovascular peroneal intervention for critical limb ischemia[J]. J Vasc Surg, 2019, 69(1): 148-155.
|
[2] |
El Baradie KBY, Khan MB, Mendhe B, et al. The cyclophilin inhibitor NIM-811 increases muscle cell survival with hypoxia in vitro and improves gait performance following ischemia-reperfusion in vivo[J]. Sci Rep, 2021, 11(1): 6152.
|
[3] |
Wu YY, Kuo HC. Functional roles and networks of non-coding RNAs in the pathogenesis of neurodegenerative diseases[J]. J Biomed Sci, 2020, 27(1): 49.
|
[4] |
Ambros V. MicroRNAs: tiny regulators with great potential[J]. Cell, 2001, 107(7): 823-826.
|
[5] |
Dumont NA, Bentzinger CF, Sincennes MC, et al. Satellite cells and skeletal muscle regeneration[J]. Compr Physiol, 2015, 5(3): 1027-1059.
|
[6] |
Sakaki S, Takahashi T, Matsumoto J, et al. Characteristics of physical activity in patients with critical limb ischemia[J]. J Phys Ther Sci, 2016, 28(12): 3454-3457.
|
[7] |
Di Primio M, Angelopoulos G, Lazareth I, et al. Endovascular extra-anatomic femoro-popliteal bypass for limb salvage in chronic critical limb ischemia[J]. Cardiovasc Intervent Radiol, 2019, 42(9): 1279-1292.
|
[8] |
Dayama A, Tsilimparis N, Kolakowski S, et al. Clinical outcomes of bypass-first versus endovascular-first strategy in patients with chronic limb-threatening ischemia due to infrageniculate arterial disease[J]. J Vasc Surg, 2019, 69(1): 156-163.
|
[9] |
Simon F, Oberhuber A, Floros N, et al. Acute limb ischemia-much more than just a lack of oxygen[J]. Int J Mol Sci,2018,19(2): 374.
|
[10] |
Panisello-Roselló A, Roselló-Catafau J. Molecular mechanisms and pathophysiology of ischemia-reperfusion injury[J]. Int J Mol Sci,2018,19(12): 4093.
|
[11] |
Korei C, Szabo B, Varga A, et al. Hematological, micro-rheological, and metabolic changes modulated by local ischemic pre- and post-conditioning in rat limb ischemia-reperfusion[J]. Metabolites, 2021, 11(11): 776.
|
[12] |
Tran TP, Tu H, Pipinos II, et al. Tourniquet-induced acute ischemia-reperfusion injury in mouse skeletal muscles: Involvement of superoxide[J]. Eur J Pharmacol, 2011, 650(1): 328-334.
|
[13] |
Gan X, Xing D, Su G, et al. Corrigendum to "propofol attenuates small Iintestinal ischemia reperfusion injury through inhibiting NADPH oxidase mediated mast cell activation" [J]. Oxid Med Cell Longev, 2017, 2017: 8932871.
|
[14] |
Delfan M, Amadeh Juybari R, Gorgani-Firuzjaee S, et al. High-intensity interval training improves cardiac function by miR-206 dependent HSP60 induction in diabetic rats[J]. Front Cardiovasc Med, 2022, 9: 927956.
|
[15] |
Westendorp B, Major J L, Nader M, et al. The E2F6 repressor activates gene expression in myocardium resulting in dilated cardiomyopathy[J]. FASEB J, 2012, 26(6): 2569-2579.
|
[16] |
Amirouche A, Jahnke VE, Lunde JA, et al. Muscle-specific microRNA-206 targets multiple components in dystrophic skeletal muscle representing beneficial adaptations[J]. Am J Physiol Cell Physiol, 2017, 312(3): C209-C221.
|
[17] |
Nakasa T, Ishikawa M, Shi M, et al. Acceleration of muscle regeneration by local injection of muscle-specific microRNAs in rat skeletal muscle injury model[J]. J Cell Mol Med, 2010, 14(10): 2495-2505.
|
[18] |
Yin Y, Han W, Cao Y. Association between activities of SOD, MDA and Na+-K+-ATPase in peripheral blood of patients with acute myocardial infarction and the complication of varying degrees of arrhythmia[J]. Hellenic J Cardiol, 2019, 60(6): 366-371.
|
[19] |
Yang M, Hua T, Yang Z, et al. The protective effect of rhBNP on postresuscitation myocardial dysfunction in a rat cardiac arrest model[J]. Biomed Res Int, 2020, 2020: 6969053.
|
[20] |
McDermott MM, Ferrucci L, Gonzalez-Freire M, et al. Skeletal muscle pathology in peripheral artery disease: a brief review[J]. Arterioscler Thromb Vasc Biol, 2020, 40(11): 2577-2585.
|