[1] |
Chua AW, Khoo YC, Tan BK, et al. Skin tissue engineering advances in severe burns: review and therapeutic applications[J]. Burns Trauma, 2016, 4: 3.
|
[2] |
Bondioli E, Fini M, Veronesi F, et al. Development and evaluation of decellularized membrane from human dermis[J]. J Tissue Eng Regen Med, 2014, 8(4): 325-336.
|
[3] |
Eming SA, Hubbell JA. Extracellular matrix in angiogenesis: dynamic structures with translational potential[J]. Exp Dermatol, 2011, 20(7): 605-613.
|
[4] |
Yan W, Liu H, Deng X, et al. Acellular dermal matrix scaffolds coated with connective tissue growth factor accelerate diabetic wound healing by increasing fibronectin through PKC signalling pathway[J]. J Tissue Eng Regen Med, 2018, 12(3): e1461-e1473.
|
[5] |
Nie C, Yang D, Morris SF. Local delivery of adipose-derived stem cells via acellular dermal matrix as a scaffold: a new promising strategy to accelerate wound healing[J]. Med Hypotheses, 2009, 72(6): 679-682.
|
[6] |
Sigalove S. Options in Acellular Dermal Matrix-Device Assembly[J]. Plast Reconstr Surg, 2017, 140(6S Prepectoral Breast Reconstruction): 39S-42S.
|
[7] |
Hughes OB, Rakosi A, Macquhae F, et al. A Review of Cellular and Acellular Matrix Products: Indications, Techniques, and Outcomes[J]. Plast Reconstr Surg, 2016, 138(3 Suppl): 138S-147S.
|
[8] |
Zhang Z, Lv L, Mamat M, et al. Xenogenic (porcine) acellular dermal matrix is useful for the wound healing of severely damaged extremities[J]. Exp Therapeutic Med, 2014, 7(3): 621-624.
|
[9] |
王永飞, 程勇, 许喜生. 毛囊干细胞在创面愈合中的应用进展[J]. 现代医药卫生, 2015, 31(4): 548-551.
|
[10] |
Bermudez DM, Xu J, Herdrich BJ, et al. Inhibition of stromal cell-derived factor-1α further impairs diabetic wound healing[J]. J Vasc Surg, 2011, 53(3): 774-784.
|
[11] |
Nusse R. Wnt signaling and stem cell control[J]. Cell Res, 2008, 18(5): 523-527.
|
[12] |
Clevers H, Nusse R. Wnt/β-catenin signaling and disease[J]. Cell, 2012, 149(6): 1192-1205.
|
[13] |
Kishimoto J, Burgeson RE, Morgan1 BA. Wnt signaling maint ains t he hai r-inducing act ivi ty of t he dermal papilla[J]. Genes Dev, 2000, 14(10): 1181-1185.
|
[14] |
Carre AL, James AW, MacLeod L, et al. Interaction of wingless protein (Wnt), transforming growth factor-beta1, and hyaluronan production in fetal and postnatal fibroblasts[J]. Plast Reconstr Surg, 2010, 25(1): 74-88.
|
[15] |
Ito M, Yang Z, Andl T, et al. Wnt-dependent de novo hair follele regeneration in adult mouse skin wound after wounding[J]. Nature, 2007, 447(7142): 316-320.
|
[16] |
Amini-Nik S, Glancy D, Boimer C, et al. Pax7 expressing cells contribute to dermal wound repair, regulating scar size through a β-catenin mediated process[J]. Stem Cells, 2011, 29(9): 1371-1379.
|
[17] |
Kanda S, Miyata Y, Kanetake H. Fibroblast growth factor-2-mediated capillary morphogenesis of endothelial cells requires signals via Flt-1/vascular endothelial growth factor receptor-1: possible involvement of c-Akt[J]. J Biol Chem, 2004, 279(6): 4007-4016.
|
[18] |
Fei Y, Xiao L, Doetschman T, et al. Fibroblast growth factor 2 stimulation of osteoblast differentiation and bone formation is mediated by modulation of the Wnt signaling pathway[J]. J Biol Chem, 2011, 286(47): 40575-40583.
|
[19] |
Hung IH, Yu K, Lavine KJ, et al. FGF9 regulates early hypertrophic chondrocyte differentiation and skeletal vascularization in the developing stylopod[J]. Dev Biol, 2007, 307(2): 300-313.
|
[20] |
Giannouli CC, Kletsas D. TGF-beta regulates differentially the proliferation of fetal and adult human skin fibroblasts via the activation of PKA and the autocrine action of FGF-2[J]. Cell Signal, 2006, 18(9): 1417-1429.
|
[21] |
Cheon SS, Wei Q, Gurung A, et al. Beta-catenin regulates wound size and mediates the effect of TGF-beta in cutaneous healing[J]. FASEB J, 2006, 20(6): 692-701.
|
[22] |
Wang X, Chen H, Tian R, et al. Macrophages induce AKT/β-catenin-dependent Lgr5+ stem cell activation and hair follicle regeneration through TNF[J]. Nat Commun, 2017, 8: 1409.
|