切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2017, Vol. 12 ›› Issue (06) : 409 -413. doi: 10.3877/cma.j.issn.1673-9450.2017.06.002

所属专题: 文献

专家述评

组织工程技术:适时从临床回归实验室
范飞1,(), 陆晓娜1   
  1. 1. 100144 中国医学科学院,北京协和医学院整形外科医院
  • 收稿日期:2017-09-26 出版日期:2017-12-01
  • 通信作者: 范飞
  • 基金资助:
    首都卫生发展科研专项(首发2016-2-4042); 北京协和医学院研究生创新基金(5201020104); 中国医学科学院整形外科医院院所基金(5201010414); 中国医学科学院整形外科医院院所青年基金(5201010404)

Tissue engineering technology should timely return to laboratory from clinic

Fei Fan1,(), Xiaona Lu1   

  1. 1. Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100144, China
  • Received:2017-09-26 Published:2017-12-01
  • Corresponding author: Fei Fan
  • About author:
    Corresponding author: Fan Fei, Email:
引用本文:

范飞, 陆晓娜. 组织工程技术:适时从临床回归实验室[J]. 中华损伤与修复杂志(电子版), 2017, 12(06): 409-413.

Fei Fan, Xiaona Lu. Tissue engineering technology should timely return to laboratory from clinic[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2017, 12(06): 409-413.

组织工程技术正逐渐从实验室向临床应用转化,作为该技术的临床试验中心之一,笔者遇到了一些限制该技术应用和推广的问题。本文将目前面临的临床问题及相应有望的解决措施,依据组织工程三要素(种子细胞、支架材料及培养环境)的分类原则进行了总结。为解决这些问题,研究者们还是需要回归实验室,从最初的体外培养阶段开始寻找思路。

Tissue engineering technology is gradually transformed from laboratory to clinical application. As one of the clinical trial centers of this technology, the authors ran into some problems restricting the opplication and popularization of the technology. This article summarizes the current clinical problems and the corresponding potential solutions according to the classification principle of the three elements of tissue engineering seed cells, scaffolds and tissue engineering. To solve these problems, researchers still need to return to the laboratory and looking for ideas from initial stage of in vitro culture.

[1]
Vacanti CA, Langer R, Schloo B, et al. Synthetic polymers seeded with chondrocytes provide a template for new cartilage formation[J]. Plast Reconstr Surg, 1991, 88(5):753-759.
[2]
Vacanti CA, Kim W, Schloo B. Joint resurfacing with cartilage grown in situ from cell-polymer structures[J]. Am J Sports Med, 1994, 22(4):485-488.
[3]
Shinoka T, Breuer CK, Tanel RE, et al. Tissue engineering heart valves: valve leaflet replacement study in a lamb model[J]. Ann Thorac Surg, 1995, 60(6 Suppl):S513-S516.
[4]
Macchiarini P, Jungebluth P, Go T, et al. Clinical transplantation of a tissue-engineered airway[J]. Lancet, 2008, 372(9655):2023-2030.
[5]
Gonfiotti A, Jaus MO, Barale D, et al. The first tissue-engineered airway transplantation: 5-year follow-up results[J]. Lancet, 2014, 383(9913):238-244.
[6]
Sun H, Liu W, Zhou G, et al. Tissue engineering of cartilage, tendon and bone[J]. Front Med, 2011, 5(1):61-69.
[7]
Vacanti JP, Kulig KM. Liver cell therapy and tissue engineering for transplantation[J]. Semin Pediatr Surg, 2014, 23(3):150-155.
[8]
Kim SS, Kaihara S, Benvenuto MS, et al. Regenerative signals for intestinal epithelial organoid units transplanted on biodegradable polymer scaffolds for tissue engineering of small intestine[J]. Transplantation, 1999, 67(2):227-233.
[9]
Shiba Y. New strategy for the treatment of myocarditis by cell-sheet technology[J]. Circ J, 2015, 79(1):51-52.
[10]
Cao Y, Vacanti JP, Paige KT, et al. Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue-engineered cartilage in the shape of a human ear[J]. Plast Reconstr Surg, 1997, 100(2):297-302; discussion 303-304.
[11]
Xu Y, Fan F, Kang N, et al. Tissue engineering of human nasal alar cartilage precisely by using three-dimensional printing[J]. Plast Reconstr Surg, 2015, 135(2):451-458.
[12]
Ding J, Chen B, Lv T, et al. Bone Marrow Mesenchymal Stem Cell-Based Engineered Cartilage Ameliorates Polyglycolic Acid/Polylactic Acid Scaffold-Induced Inflammation Through M2 Polarization of Macrophages in a Pig Model[J]. Stem Cells Transl Med, 2016, 5(8):1079-1089.
[13]
Volz AC, Huber B, Kluger PJ. Adipose-derived stem cell differentiation as a basic tool for vascularized adipose tissue engineering[J]. Differentiation, 2016, 92(1/2):52-64.
[14]
Li D, Zhu L, Liu Y, et al. Stable subcutaneous cartilage regeneration of bone marrow stromal cells directed by chondrocyte sheet[J]. Acta Biomater, 2017, 54:321-332.
[15]
Ramakrishnan VM, Boyd NL. The Adipose Stromal Vascular Fraction as a Complex Cellular Source for Tissue Engineering Applications[J]. Tissue Eng Part B Rev, 2017. [Epub ahead of print]
[16]
Kang N, Liu X, Guan Y, et al. Effects of co-culturing BMMSCs and auricular chondrocytes on the elastic modulus and hypertrophy of tissue engineered cartilage[J]. Biomaterials, 2012, 33(18):4535-4544.
[17]
Markstedt K, Mantas A, Tournier I, et al. 3D Bioprinting Human Chondrocytes with Nanocellulose-Alginate Bioink for Cartilage Tissue Engineering Applications[J]. Biomacromolecules, 2015, 16(5):1489-1496.
[18]
Jacobs NT, Cortes DH, Peloquin JM, et al. Validation and application of an intervertebral disc finite element model utilizing independently constructed tissue-level constitutive formulations that are nonlinear, anisotropic, and time-dependent[J]. J Biomech, 2014, 47(11):2540-2546.
[19]
Ladet S, David L, Domard A. Multi-membrane hydrogels[J]. Nature, 2008, 452(7183):76-79.
[20]
Xue JX, Gong YY, Zhou GD, et al. Chondrogenic differentiation of bone marrow-derived mesenchymal stem cells induced by acellular cartilage sheets[J]. Biomaterials, 2012, 33(24):5832-5840.
[21]
Liao HT, Zheng R, Liu W, et al. Prefabricated, ear-shaped cartilage tissue engineering by scaffold-free porcine chondrocyte membrane[J]. Plast Reconstr Surg, 2015, 135(2):313e-321e.
[22]
Masuda S, Shimizu T. Three-dimensional cardiac tissue fabrication based on cell sheet technology[J]. Adv Drug Deliv Rev, 2016, 96:103-109.
[23]
Lin X, Wang W, Zhang W, et al. Hyaluronic Acid Coating Enhances Biocompatibility of Nonwoven PGA Scaffold and Cartilage Formation[J]. Tissue Eng Part C Methods, 2017, 23(2):86-97.
[24]
Mumme M, Barbero A, Miot S, et al. Nasal chondrocyte-based engineered autologous cartilage tissue for repair of articular cartilage defects: an observational first-in-human trial[J]. Lancet, 2016, 388(10055):1985-1994.
[25]
张雪. 软骨微环境及细胞起源对再生软骨类型的调控作用[D].北京:北京协和医学院,2016.
[26]
Kellner K, Schulz MB, Göpferich A, et al. Insulin in tissue engineering of cartilage: a potential model system for growth factor application[J]. J Drug Target, 2001, 9(6):439-448.
[27]
Nanda HS, Chen S, Zhang Q, et al. Collagen scaffolds with controlled insulin release and controlled pore structure for cartilage tissue engineering[J]. Biomed Res Int, 2014, 2014:623805.
[28]
Zhang Z, Li L, Yang W, et al. The effects of different doses of IGF-1 on cartilage and subchondral bone during the repair of full-thickness articular cartilage defects in rabbits[J]. Osteoarthritis Cartilage, 2017, 25(2):309-320.
[29]
Maes C, Araldi E, Haigh K, et al. VEGF-independent cell-autonomous functions of HIF-1alpha regulating oxygen consumption in fetal cartilage are critical for chondrocyte survival[J]. J Bone Miner Res, 2012, 27(3):596-609.
[30]
Makris EA, Huang BJ, Hu JC, et al. Digoxin and adenosine triphosphate enhance the functional properties of tissue-engineered cartilage[J]. Tissue Eng Part A, 2015, 21(5/6):884-894.
[31]
Chen J, Yuan Z, Liu Y, et al. Improvement of In Vitro Three-Dimensional Cartilage Regeneration by a Novel Hydrostatic Pressure Bioreactor[J]. Stem Cells Transl Med, 2017, 6(3):982-991.
[32]
Gharravi AM, Orazizadeh M, Hashemitabar M. Direct expansion of chondrocytes in a dynamic three-dimensional culture system: overcoming dedifferentiation effects in monolayer culture[J]. Artif Organs, 2014, 38(12):1053-1058.
[33]
Xu Y, Wang Q, Li Y, et al. Cyclic Tensile Strain Induces Tenogenic Differentiation of Tendon-Derived Stem Cells in Bioreactor Culture[J]. Biomed Res Int, 2015, 2015:790804.
[34]
Riboh J, Chong AK, Pham H, et al. Optimization of flexor tendon tissue engineering with a cyclic strain bioreactor[J]. J Hand Surg Am, 2008, 33(8):1388-1396.
[35]
Shahin K, Doran PM. Shear and Compression Bioreactor for Cartilage Synthesis[J]. Methods Mol Biol, 2015, 1340:221-233.
[36]
Wang N, Grad S, Stoddart MJ, et al. Particulate cartilage under bioreactor-induced compression and shear[J]. Int Orthop, 2014, 38(5):1105-1111.
[37]
Carroll SF, Buckley CT, Kelly DJ. Cyclic hydrostatic pressure promotes a stable cartilage phenotype and enhances the functional development of cartilaginous grafts engineered using multipotent stromal cells isolated from bone marrow and infrapatellar fat pad[J]. J Biomech, 2014, 47(9):2115-2121.
[38]
Gharravi AM, Orazizadeh M, Ansari-Asl K, et al. Design and fabrication of anatomical bioreactor systems containing alginate scaffolds for cartilage tissue engineering[J]. Avicenna J Med Biotechnol, 2012, 4(2):65-74.
[39]
Youngstrom DW, Rajpar I, Kaplan DL, et al. A bioreactor system for in vitro tendon differentiation and tendon tissue engineering[J]. J Orthop Res, 2015, 33(6):911-918.
[40]
Tsai TL, Nelson BC, Anderson PA, et al. Intervertebral disc and stem cells cocultured in biomimetic extracellular matrix stimulated by cyclic compression in perfusion bioreactor[J]. Spine J, 2014, 14(9):2127-2140.
[41]
Abid A, Saidane F, Hamdi M. Feasibility of carbon dioxide sequestration by Spongiochloris sp microalgae during petroleum wastewater treatment in airlift bioreactor[J]. Bioresour Technol, 2017, 234:297-302.
[1] 陈严城, 符培亮. 组织工程技术在骨软骨缺损中应用的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 376-384.
[2] 钱嘉天, 符培亮. 3D打印脱细胞的细胞外基质修复软骨缺损的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 368-375.
[3] 陈曦, 刘畅, 李萍, 李雨航, 陈彦斌, 王昆. 肩峰下滑囊的解剖结构和功能与临床意义[J]. 中华关节外科杂志(电子版), 2022, 16(03): 337-342.
[4] 王雪, 程微, 苏建东. 微针法表皮移植应用的新进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 270-273.
[5] 蒯贤东, 郑国爽, 杨佳慧, 赵德伟. 用于关节软骨缺损修复的壳聚糖复合支架的研究进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(06): 535-539.
[6] 刘梦柔, 刘沛东, 张城铭, 刘阳, 李鹏翠, 杨自权. 基于文献计量学与可视化分析的骨组织工程支架材料的全球研究现状及发展趋势[J]. 中华损伤与修复杂志(电子版), 2022, 17(05): 411-420.
[7] 寇佳慧, 张梦圆, 张宝林. 生物组织工程中细胞外基质成分促进创面愈合的研究进展[J]. 中华损伤与修复杂志(电子版), 2021, 16(05): 449-452.
[8] 王湘滔, 张爱娟, 王万春, 王芳萍, 徐颖婕, 孟洋. 中药白及在口腔疾病中的研究与应用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 371-375.
[9] 孙艺琪, 史宏灿. 纳米技术在气管移植物中的应用[J]. 中华移植杂志(电子版), 2022, 16(05): 309-313.
[10] 钟文文, 李科, 刘碧好, 蔡炳, 脱颖, 叶雷, 马波, 瞿虎, 汪中扬, 王德娟, 邱剑光. 不同比例聚乳酸/丝素蛋白复合支架在兔尿道缺损修复中的疗效[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 516-522.
[11] 冯欢, 杨凤霞, 许静, 黄婧琼, 刘晓青, 陈艳, 褚玲玲. 胸腹部创面愈合的研究现状及进展[J]. 中华肺部疾病杂志(电子版), 2021, 14(06): 840-842.
[12] 林诗雯, 孙慧, 陈娜娜, 朱聪. 共培养促神经化策略在组织工程骨构建中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(05): 293-299.
[13] 张郭, 慈海, 周牧冉, 孙家明, 郭亮. 仿生聚己内酯支架用于乳房组织工程的可行性研究[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(04): 215-223.
[14] 周莹芊, 汪振星, 张一帆, 孙家明, 曹谊林. 模块化与血管化组织工程技术[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(03): 161-166.
[15] 杜凯玥, 袁博伟, 洪晶. 水凝胶在角膜修复中的应用研究进展[J]. 中华眼科医学杂志(电子版), 2022, 12(05): 298-304.
阅读次数
全文


摘要