切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2017, Vol. 12 ›› Issue (06) : 421 -424. doi: 10.3877/cma.j.issn.1673-9450.2017.06.004

所属专题: 文献

技术与创新

一种可提供循环可控的动态力学刺激的组织工程动态培养仪
陆晓娜1, 徐奕昊1, 王欢1, 尤建军1, 张波1, 郑若冰1, 田乐1, 范飞1,()   
  1. 1. 100144 中国医学科学院,北京协和医学院 整形外科医院
  • 收稿日期:2017-11-16 出版日期:2017-12-01
  • 通信作者: 范飞
  • 基金资助:
    首都卫生发展科研专项(首发2016-2-4042); 北京协和医学院研究生创新基金(5201020104); 中国医学科学院整形外科医院院所基金(5201010414); 中国医学科学院整形外科医院院所青年基金(5201010404)

A tissue engineering dynamic culture instrument to provide cyclic dynamic mechanical stimulation

Xiaona Lu1, Yihao Xu1, Huan Wang1, Jianjun You1, Bo Zhang1, Ruobing Zheng1, Le Tian1, Fei Fan1,()   

  1. 1. Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100144, China
  • Received:2017-11-16 Published:2017-12-01
  • Corresponding author: Fei Fan
  • About author:
    Corresponding author: Fan Fei, Email:
引用本文:

陆晓娜, 徐奕昊, 王欢, 尤建军, 张波, 郑若冰, 田乐, 范飞. 一种可提供循环可控的动态力学刺激的组织工程动态培养仪[J]. 中华损伤与修复杂志(电子版), 2017, 12(06): 421-424.

Xiaona Lu, Yihao Xu, Huan Wang, Jianjun You, Bo Zhang, Ruobing Zheng, Le Tian, Fei Fan. A tissue engineering dynamic culture instrument to provide cyclic dynamic mechanical stimulation[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2017, 12(06): 421-424.

为工程组织提供力学刺激,以提高培养效果的组织工程动态培养越来越受到关注。研究表明,周期性变化的力学刺激相比持续恒定的力学刺激更能模拟人体生理环境,因而更有利于工程组织的生长和分化。但现有的组织工程动态培养仪或生物反应器多采用恒定的力学刺激为工程组织提供培养环境。为了利用周期性变化的力学刺激改善培养效果,笔者研发了此组织工程动态培养仪。该培养仪通过单片机控制系统实现其核心功能,提供可以调节的周期性的力学刺激。

The dynamic training of tissue engineering, which improves the training effect by providing mechanical stimulation for the engineering tissue, are getting more and more attention. Studies have shown that mechanical stimulation of cyclical changes simulate the physiological environment of human body more than continuous mechanical stimulation, which is more advantageous to the growth and differentiation of engineering tissues. However, the existing tissue engineering dynamic culture instrument or bioreactor usually uses constant mechanical stimulation to provide training environment for the engineering tissues. In order to improve the training effect by using the cyclic mechanical stimulation, the authors developed this tissue engineering culture instrument. The cultivation instrument achieves its core functions through a single-chip control system and provides an adjustable periodic mechanical stimulation.

图1 组织工程动态培养相关研究论文数量增长情况
图2 组织工程动态培养仪组合使用方法示意图
图3 组织工程动态培养仪单个培养仪单元示意图
图4 组织工程动态培养仪单元内部结构示意图
图5 组织工程动态培养仪供电系统内部结构示意图
图6 组织工程动态培养仪控制面板示意图
[1]
Inloes DS, Taylor DP, Cohen SN, et al. Ethanol Production by Saccharomyces Cerevisiae Immobilized in Hollow-Fiber Membrane Bioreactors[J]. Appl Environ Microbiol, 1983, 46(1):264-278.
[2]
Araujo AR, Peixinho N, Pinho AC, et al. Quasi-static and dynamic properties of the intervertebral disc: experimental study and model parameter determination for the porcine lumbar motion segment[J]. Acta Bioeng Biomech, 2015, 17(4):59-66.
[3]
Maher SA, Wang H, Koff MF, et al. Clinical platform for understanding the relationship between joint contact mechanics and articular cartilage changes after meniscal surgery[J]. J Orthop Res, 2017, 35(3):600-611.
[4]
Halloran JP, Sibole S, van Donkelaar CC, et al. Multiscale mechanics of articular cartilage: potentials and challenges of coupling musculoskeletal, joint, and microscale computational models[J]. Ann Biomed Eng, 2012, 40(11):2456-2474.
[5]
Nguyen AM, Levenston ME. Comparison of osmotic swelling influences on meniscal fibrocartilage and articular cartilage tissue mechanics in compression and shear[J]. J Orthop Res, 2012, 30(1):95-102.
[6]
Gao Y, Liu S, Huang J, et al. The ECM-cell interaction of cartilage extracellular matrix on chondrocytes[J]. Biomed Res Int, 2014, 2014:648459.
[7]
Ogawa H, Kozhemyakina E, Hung HH, et al. Mechanical motion promotes expression of Prg4 in articular cartilage via multiple CREB-dependent, fluid flow shear stress-induced signaling pathways[J]. Genes Dev, 2014, 28(2):127-139.
[8]
Lui PP. Histopathological changes in tendinopathy--potential roles of BMPs[J]. Rheumatology (Oxford), 2013, 52(12):2116-2126.
[9]
Lai WM, Mow VC. Drag-induced compression of articular cartilage during a permeation experiment[J]. Biorheology, 1980, 17(1/2):111-123.
[10]
Cao Y, Stannus OP, Aitken D, et al. Cross-sectional and longitudinal associations between systemic, subchondral bone mineral density and knee cartilage thickness in older adults with or without radiographic osteoarthritis[J]. Ann Rheum Dis, 2014, 73(11):2003-2009.
[11]
Buckwalter JA, Mankin HJ. Articular cartilage: tissue design and chondrocyte-matrix interactions[J]. Instr Course Lect, 1998, 47:477-486.
[12]
Zhang L, Hu J, Athanasiou KA. The role of tissue engineering in articular cartilage repair and regeneration[J]. Crit Rev Biomed Eng, 2009, 37(1/2):1-57.
[13]
Gemmiti CV, Guldberg RE. Fluid flow increases type II collagen deposition and tensile mechanical properties in bioreactor-grown tissue-engineered cartilage[J]. Tissue Eng, 2006, 12(3):469-479.
[14]
Preiss-Bloom O, Mizrahi J, Elisseeff J, et al. Real-time monitoring of force response measured in mechanically stimulated tissue-engineered cartilage[J]. Artif Organs, 2009, 33(4):318-327.
[15]
De Croos JN, Dhaliwal SS, Grynpas MD, et al. Cyclic compressive mechanical stimulation induces sequential catabolic and anabolic gene changes in chondrocytes resulting in increased extracellular matrix accumulation[J]. Matrix Biol, 2006, 25(6):323-331.
[16]
Waldman SD, Couto DC, Grynpas MD, et al. A single application of cyclic loading can accelerate matrix deposition and enhance the properties of tissue-engineered cartilage[J]. Osteoarthritis Cartilage, 2006, 14(4):323-330.
[17]
Smith RL, Lin J, Trindade MC, et al. Time-dependent effects of intermittent hydrostatic pressure on articular chondrocyte type II collagen and aggrecan mRNA expression[J]. J Rehabil Res Dev, 2000, 37(2):153-161.
[18]
Grad S, Gogolewski S, Alini M, et al. Effects of simple and complex motion patterns on gene expression of chondrocytes seeded in 3D scaffolds[J]. Tissue Eng, 2006, 12(11):3171-3179.
[19]
Han L, Grodzinsky AJ, Ortiz C. Nanomechanics of the Cartilage Extracellular Matrix[J]. Annu Rev Mater Res, 2011, 41:133-168.
[1] 陈严城, 符培亮. 组织工程技术在骨软骨缺损中应用的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 376-384.
[2] 钱嘉天, 符培亮. 3D打印脱细胞的细胞外基质修复软骨缺损的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 368-375.
[3] 陈曦, 刘畅, 李萍, 李雨航, 陈彦斌, 王昆. 肩峰下滑囊的解剖结构和功能与临床意义[J]. 中华关节外科杂志(电子版), 2022, 16(03): 337-342.
[4] 王雪, 程微, 苏建东. 微针法表皮移植应用的新进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 270-273.
[5] 蒯贤东, 郑国爽, 杨佳慧, 赵德伟. 用于关节软骨缺损修复的壳聚糖复合支架的研究进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(06): 535-539.
[6] 刘梦柔, 刘沛东, 张城铭, 刘阳, 李鹏翠, 杨自权. 基于文献计量学与可视化分析的骨组织工程支架材料的全球研究现状及发展趋势[J]. 中华损伤与修复杂志(电子版), 2022, 17(05): 411-420.
[7] 寇佳慧, 张梦圆, 张宝林. 生物组织工程中细胞外基质成分促进创面愈合的研究进展[J]. 中华损伤与修复杂志(电子版), 2021, 16(05): 449-452.
[8] 王湘滔, 张爱娟, 王万春, 王芳萍, 徐颖婕, 孟洋. 中药白及在口腔疾病中的研究与应用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 371-375.
[9] 孙艺琪, 史宏灿. 纳米技术在气管移植物中的应用[J]. 中华移植杂志(电子版), 2022, 16(05): 309-313.
[10] 钟文文, 李科, 刘碧好, 蔡炳, 脱颖, 叶雷, 马波, 瞿虎, 汪中扬, 王德娟, 邱剑光. 不同比例聚乳酸/丝素蛋白复合支架在兔尿道缺损修复中的疗效[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 516-522.
[11] 冯欢, 杨凤霞, 许静, 黄婧琼, 刘晓青, 陈艳, 褚玲玲. 胸腹部创面愈合的研究现状及进展[J]. 中华肺部疾病杂志(电子版), 2021, 14(06): 840-842.
[12] 林诗雯, 孙慧, 陈娜娜, 朱聪. 共培养促神经化策略在组织工程骨构建中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(05): 293-299.
[13] 张郭, 慈海, 周牧冉, 孙家明, 郭亮. 仿生聚己内酯支架用于乳房组织工程的可行性研究[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(04): 215-223.
[14] 周莹芊, 汪振星, 张一帆, 孙家明, 曹谊林. 模块化与血管化组织工程技术[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(03): 161-166.
[15] 杜凯玥, 袁博伟, 洪晶. 水凝胶在角膜修复中的应用研究进展[J]. 中华眼科医学杂志(电子版), 2022, 12(05): 298-304.
阅读次数
全文


摘要