切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2020, Vol. 15 ›› Issue (01) : 37 -44. doi: 10.3877/cma.j.issn.1673-9450.2020.01.006

所属专题: 文献

论著

丁酸钠对50%总体表面积烫伤大鼠肺血管内皮糖萼层保护作用和机制研究
马丽千1, 唐富波2, 王海滨3, 李琰光1, 张慧苹1, 胡森1,()   
  1. 1. 100037 北京,解放军总医院医学创新研究部创伤修复与组织再生研究中心
    2. 614000 乐山,武警四川总队医院门诊部
    3. 100048 北京,解放军总医院第四医学中心检验科
  • 收稿日期:2019-12-18 出版日期:2020-02-01
  • 通信作者: 胡森
  • 基金资助:
    国家自然科学基金项目(81471872)

Study on the protective effect and mechanism of sodium butyrate on endothelial glucocalyx layer in pulmonary vessels of rats with 50% total body surface area scald

Liqian Ma1, Fubo Tang2, Haibin Wang3, Yanguang Li1, Huiping Zhang1, Sen Hu1,()   

  1. 1. Research Center of Trauma Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100853, China
    2. Department of Outpatienty, Sichuan Provincial Corps Hospital of Chinese People′s Armed Police Forces, Leshan 614000, China
    3. Department of Laboratory Medicine, Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
  • Received:2019-12-18 Published:2020-02-01
  • Corresponding author: Sen Hu
  • About author:
    Corresponding author: Hu Sen, Email:
引用本文:

马丽千, 唐富波, 王海滨, 李琰光, 张慧苹, 胡森. 丁酸钠对50%总体表面积烫伤大鼠肺血管内皮糖萼层保护作用和机制研究[J]. 中华损伤与修复杂志(电子版), 2020, 15(01): 37-44.

Liqian Ma, Fubo Tang, Haibin Wang, Yanguang Li, Huiping Zhang, Sen Hu. Study on the protective effect and mechanism of sodium butyrate on endothelial glucocalyx layer in pulmonary vessels of rats with 50% total body surface area scald[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2020, 15(01): 37-44.

目的

研究丁酸钠对严重烫伤大鼠肺血管内皮糖萼层的保护作用及可能机制。

方法

将144只成年雄性SD大鼠按照随机数字表法分成假伤+盐水组(n=24),假伤+丁酸钠组(n=24),烫伤+盐水组(n=48),烫伤+丁酸钠组(n=48)。制作50%总体表面积Ⅲ度烫伤模型:烫伤+盐水组和烫伤+丁酸钠组大鼠麻醉、备皮后置于80 ℃水浴锅中(背部15 s,腹部8 s,双下肢15 s),假伤+盐水组和假伤+丁酸钠组大鼠浸入37 ℃水相同时间。假伤+丁酸钠组和烫伤+丁酸钠组立即皮下注射丁酸钠(300 mg/kg);假伤+盐水组和烫伤+盐水组立即皮下注射0.5 mL 0.9%氯化钠溶液。于伤后3、6 h分别处死动物并取材,测定肺泡灌洗液蛋白(BALF)浓度,肺湿干重比;采用蛋白质印迹法和酶联免疫法检测肺组织多配体蛋白聚糖-1(SDC-1)、基质金属蛋白酶9(MMP-9)和血管内皮生长因子(VEGF)的蛋白表达和含量率的变化。数据比较采用单因素方差分析和Newman-Kueuls法。

结果

(1)伤后3、6 h,烫伤+盐水组BALF蛋白浓度分别为(0.657 5±0.045 5)、(0.684 1±0.076 0) mg/mL,高于假伤+盐水组[(0.476 6±0.065 8) mg/mL],差异均有统计学意义(q=7.188、8.243,P值均小于0.05);伤后3、6 h,烫伤+盐水组肺湿干重比分别为4.545 1±0.444 4,4.795 1±0.606 6,均高于假伤+盐水组(2.636 0±0.157 5),差异均有统计学意义(q=10.950、12.380,P值均小于0.05)。伤后3、6 h,烫伤+丁酸钠组BALF蛋白浓度分别为(0.541 0±0.071 )、(0.538 1±0.063 6) mg/mL,均低于烫伤+盐水组[(0.657 5±0.045 5)、(0.684 1±0.076 0) mg/mL],差异均有统计学意义(q=4.610、5.799,P值均小于0.05);且伤后3、6 h,烫伤+丁酸钠组肺湿干重比值3.626 6±0.446 1、3.477 9±0.510 7,均低于烫伤+盐水组,差异均有统计学意义(q=5.269、7.555,P值均小于0.05)。(2)蛋白质印迹法检测结果显示,伤后3、6 h,烫伤+盐水组肺组织SDC-1表达水平分别为0.376 1±0.075 7、0.329 8±0.074 9,假伤+盐水组肺组织SDC-1表达水平均为1.000 0±0,2组比较差异均有统计学意义(q=13.280、14.260,P值均小于0.05)。伤后3、6 h,烫伤+丁酸钠组肺组织SDC-1表达水平分别为0.760 5±0.207 1、0.678 3±0.117 9,均高于烫伤+盐水组,差异均有统计学意义(q=8.180、7.417,P值均小于0.05)。伤后3、6 h,烫伤+盐水组肺组织MMP-9、VEGF表达水平分别为(MMP-9:2.683 4±0.318 8、2.655 6±0.448 9;VEGF:3.806 3±0.703 8、2.850 0±0.396 3),假伤+盐水组MMP-9、VEGF表达水平均为1.000 0±0,烫伤+盐水组均低于假伤+盐水组,差异均有统计学意义[(MMP-9: q=9.356、9.202),(VEGF: q=12.700、8.375); P值均小于0.05 ]。伤后3、6 h,烫伤+丁酸钠组肺组织MMP-9、VEGF表达水平分别为(MMP-9:0.995 2±0.378 5、1.527 1±0.342 8;VEGF:1.574 6±0.216 0、1.721 5±0.341 8),均低于烫伤+盐水组,差异均有统计学意义[(MMP-9: q=9.383、10.100),(VEGF: q=6.272、5.108); P值均小于0.05]。(3)酶联免疫法检测结果显示,伤后3、6 h,烫伤+盐水组与假伤+盐水组比较,肺组织MMP-9、VEGF蛋白含量均显著增高,差异均有统计学意义[(MMP-9: q=8.850、8.436), (VEGF:q=9.090、9.186); P值均小于0.05];SDC-1蛋白含量显著降低,差异均有统计学意义(q=8.296、8.331,P值均小于0.05)。伤后3、6 h,烫伤+丁酸钠组肺组织MMP-9、VEGF蛋白含量均低于烫伤+盐水组,差异均有统计学意义[(MMP-9: q=6.579、6.939),(VEGF:q=7.853、7.768);P值均小于0.05];SDC-1蛋白含量高于烫伤+盐水组(q=6.265、4.456,P值均小于0.05)。

结论

丁酸钠能减轻严重烫伤大鼠肺组织水肿,保护肺血管内皮糖萼层,其作用机制可能与抑制MMP-9和VEGF通路相关。

Objective

To study the protective effect of sodium butyrate on glycocalyx layer of pulmonary vascular endothelium in severely scalded rats and its possible mechanism.

Methods

One hundred and fourty four adult male SD rats were randomly divided into sham injury + saline group (n=24), sham injury + sodium butyrate group (n=24), scald + saline group (n=48), scald + sodium butyrate group (n=48) according to the random number table method. The full thickness degree scald models with 50% total body surface area: Rats in the scald + saline group and scald + sodium butyrate group were anesthetized and prepared in a water bath at 80 ℃ (back 15 s, abdomen 8 s, lower limbs 15 s). The rats in the sham injury + saline group and the sham injury + sodium butyrate group were immersed in water at 37 ℃ for the same time. The sham injury + sodium butyrate group and the scald + sodium butyrate group were injected subcutaneously with sodium butyrate (300 mg/kg); the sham injury + saline group and the scald + saline group were immediately injected subcutaneously with 0.5 mL of 0.9% sodium chloride solution. Rats were sacrificed at 3 and 6 h after scald, and samples were collected. The broncho-alveolar lavage fluid (BALF) concentration, lung wet-dry weight ratio were measured; lung polyligand proteoglycan-1(SDC-1), matrix metalloproteinase 9 (MMP-9) and vascular endothelial growth factor (VEGF) were measured using Western blotting and enzyme-linked immunosorbent assay. Data were compared by One-way analysis of variance and Newman-Kueuls method.

Results

(1) At 3 and 6 h after scald, the BALF protein concentration in the scald+ saline group was (0.657 5±0.045 5) and (0.684 1±0.076 0) mg/mL, which were higher than those in the sham injury + saline group (0.476 6±0.065 8) mg/mL, the differences were statistically significant (q= 7.188, 8.243; with P values below 0.05); the lung wet-dry weight ratio of the scald+ saline group were 4.545 1±0.444 4, 4.795 1±0.606 6, which were higher than that of the sham injury + saline group (2.636 0±0.157 5), the differences were statistically significant (q=10.950, 12.380; with P values below 0.05). At 3 and 6 h after scald, the BALF protein concentration in the scald + sodium butyrate group was (0.541 5±0.071 4) and (0.538 1±0.063 6) mg/mL, which were lower than those in the scald + saline group [(0.657 5±0.045 5) and (0.684 1±0.076 0)]. the differences were statistically significant (q=4.610, 5.799; with P values below 0.05); and at 3 and 6 h after scald, the lung wet-dry weight ratio of the scald + sodium butyrate group were 3.626 6±0.446 1, 3.4779±0.510 7, which were lower than those in the scald + saline group, and the differences were statistically significant (q=5.269, 7.555; with P values below 0.05). (2)The results of Western blotting analysis showed that at 3 and 6 h after scald, the expression levels of SDC-1 in the lung tissue of the scald + saline group was 0.376 1±0.075 7 and 0.329 8±0.074 9, respectively, and that of the sham injury+ saline group were all 1.000 0±0, and the differences were statistically significant (q=13.280, 14.260; with P values below 0.05). At 3 and 6 h after scald, the expression level of SDC-1 in the lung tissues of the scald+ sodium butyrate group were 0.760 5±0.207 1 and 0.678 3±0.117 9, respectively. The scald+ sodium butyrate group was significantly higher than those of the scald+ saline group, the differences were statistically significant (q=8.180, 7.417; with P values below 0.05). At 3 and 6 h after scald, the expression levels of MMP-9 and VEGF in the lung tissues of the scald + saline group were (MMP-9: 2.683 4 ± 0.318 8, 2.655 6 ± 0.448 9; VEGF: 3.806 3 ± 0.703 8, 2.850 0 ± 0.396 3). The expression levels of MMP-9 and VEGF in the sham injury+ saline group were both 1.000 0± 0, and the scald + saline group was lower than those in the sham injury + saline group, and the differences were statistically significant [(MMP-9: q=9.356, 9.202) (VEGF: q=12.7, 8.375); with P values below 0.05]. At 3 and 6 h after scald, the expression levels of MMP-9 and VEGF in the lung tissue of the scald + sodium butyrate group were (MMP-9: 0.995 2 ± 0.378 5, 1.527 1 ± 0.342 8; VEGF: 1.574 6 ± 0.216 0, 1.721 5 ± 0.341 8), which were lower than the scald+ saline group, and the differences were statistically significant [(MMP-9: q=9.383, 10.1), (VEGF: q= 6.272, 5.108); with P values below 0.05]. (3)The results of enzyme-linked immunosorbent assay showed that at 3 and 6 h after scald, the levels of MMP-9 and VEGF protein in lung tissue in the scald + saline group were higher than those in the sham injury + saline group, the differences were statistically significant [(MMP-9: q= 8.850, 8.436); (VEGF: q= 9.090, 9.186); with P values below 0.05]; the content of SDC-1 protein was significantly reduced, and the differences were statistically significant (q= 8.296, 8.331; with P values below 0.05). The contents of MMP-9 and VEGF in the lung tissues of the scald + sodium butyrate group were statistically significantly lower than those of the scald + saline group at 3 and 6 hours after the scald, the differences were statistically significant [(MMP-9: q= 6.579, 6.939), (VEGF: q= 7.853, 7.768); with P values below 0.05], SDC-1 protein content was significantly higher than those in the scald + saline group, the differences were statistically significant (q=6.265, 4.456; with P values below 0.05).

Conclusion

Sodium butyrate can restore the damage of pulmonary vascular glycocalyx layer in scald rats, the mechanism may be related to MMP-9 and VEGF pathways.

表1 丁酸钠对烫伤后大鼠BALF内蛋白含量及肺湿干重比的影响(±s)
图1 蛋白质印迹法检测大鼠肺组织SDC-1蛋白表达水平。1示假伤+盐水组;2示假伤+丁酸钠组;3示烫伤+盐水组伤后3 h;4示烫伤+丁酸钠组伤后3 h;5示烫伤+盐水组伤后6 h;6示烫伤+丁酸钠组伤后6 h;SDC-1为多配体蛋白聚糖-1;β-tublin为β微管蛋白
图2 蛋白质印迹法检测各组大鼠肺组织MMP-9、VEGF蛋白表达水平。1示假伤+盐水组;2示假伤+丁酸钠组;3示烫伤+盐水组伤后3 h;4示烫伤+丁酸钠组伤后3 h;5示烫伤+盐水组伤后6 h;6示烫伤+丁酸钠组伤后6 h;MMP-9为基质金属蛋白酶9;VEGF为血管内皮生长因子;β-actin为β肌动蛋白
表2 酶联免疫法检测丁酸钠对烫伤后大鼠肺组织MMP-9、VEGF、SDC-1蛋白含量的影响(mg/mL, ±s)
[1]
White CE, Renz EM. Advances in surgical care: management of severe burn injury[J]. Crit Care Med, 2008, 36 (7 Suppl): S318-324.
[2]
胡森,盛志勇. 重视战、创(烧)伤休克现场非常规救治技术研究 [J]. 解放军医学杂志,2011, 36 (1): 5-7.
[3]
Saffle JI. The phenomenon of " fluid creep" in acute burn resuscitation[J]. J Burn Care Res, 2007, 28(3): 382-395.
[4]
Oda J, Yamashita K, Inoue T, et al. Resuscitation fluid volume and abdominal compartment syndrome in patients with major burns[J]. Burns, 2006, 32(2): 151-154.
[5]
Magnotti LJ, Xu DZ, Lu Q, et al. Gut-derived mesenteric lymph: a link between burn and lung injury[J]. Arch Surg 1999, 134(12): 1333-1340; discussion 1340-1341.
[6]
Ding N, Ping L, Feng L, et al. Histone deacetylase 6 activity is critical for the metastasis of Burkitt's lymphoma cells[J]. Cancer Cell Int, 2014, 14(1): 139.
[7]
Lee JS, Lee GM. Effect of sodium butyrate on autophagy and apoptosis in Chinese hamster ovary cells[J]. Biotechnol Prog, 2012, 28(2): 349-357.
[8]
Roy AC, Chang G, Ma N, et al. Sodium butyrate suppresses NOD1-mediated inflammatory molecules expressed in bovine hepatocytes during iE-DAP and LPS treatment[J]. J Cell Physiol, 2019, 234(11): 19602-19620.
[9]
Tang FB, Dai YL, Zhou GY, et al. Valproic acid treatment inhibits vasopermeability and improves survival in rats with lethal scald injury[J]. J Burn Care Res, 2018, 39(2): 209-217.
[10]
Bali P, Pranpat M, Bradner J, et al. Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors[J]. J Biol Chem, 2005, 280(29): 26729-26734.
[11]
Monafo WW. Initial management of burns [J]. New Eng J Med, 1996, 335(21): 1581-1586.
[12]
Alvarado R, Chung KK, Cancio LC, et al. Burn resuscitation[J]. Burns, 2009, 35(1): 4-14.
[13]
Cope O, Moore FD. A STUDY OF CAPILLARY PERMEABILITY IN EXPERIMENTAL BURNS AND BURN SHOCK USING RADIOACTIVE DYES IN BLOOD AND LYMPH[J]. J Clin Invest, 1944, 23(2): 241-257.
[14]
Cartotto R, Zhou A. Fluid creep: the pendulum hasn′t swung back yet[J]. J Burn Care Res, 2010, 31(4): 551-558.
[15]
Faraklas I, Cochran A, Saffle J. Review of a fluid resuscitation protocol: "fluid creep" is not due to nursing error[J]. J Burn Care Res, 2012, 33(1): 74-83.
[16]
Shah A, Kramer GC, Grady JJ, et al. Meta-analysis of fluid require-ments for burn injury 1980?2002[J]. J Burn Care Rehabil, 2003, 152: S118.
[17]
Strang SG, Van Lieshout EM, Breederveld RS, et al. A systematic review on intra-abdominal pressure in severely burned patients[J]. Burns, 2014, 40(1): 9-16.
[18]
Luo HM, Hu S, Zhou GY, et al. The effects of ulinastatin on systemic inflammation, visceral vasopermeability and tissue water content in rats with scald injury[J]. Burns, 2013, 39(5): 916-922.
[19]
Wang Z, Gotte M, Bernfield M, et al. Constitutive and accelerated shedding of murine syndecan-1 is mediated by cleavage of its core protein at a specific juxtamembrane site[J]. Biochemistry, 2005, 44(37): 12355-12361.
[20]
Pries AR, Secomb TW, Gaehtgens P. The endothelial surface layer[J]. Pflugers Arch, 2000 , 440(5): 653-666.
[21]
Weinbaum S, Tarbell JM, Damiano ER. The structure and function of the endothelial glycocalyx layer[J]. Annu Rev Biomed Eng, 2007, 9: 121-167.
[22]
Fu BM, Tarbell JM. Mechano-sensing and transduction by endothelial surface glycocalyx: composition, structure, and function[J]. Wiley Interdiscip Rev Syst Biol Med, 2013, 5(3): 381-390.
[23]
Rahbar E, Cardenas JC, Baimukanova G, et al. Endothelial glycocalyx shedding and vascular permeability in severely injured trauma patients[J]. J Transl Med, 2015, 13: 117.
[24]
Lambaerts K, Wilcox-Adelman SA, Zimmermann P. The signaling mechanisms of syndecan heparan sulfate proteoglycans[J]. Curr Opin Cell Biol, 2009, 21(5): 662-669.
[25]
Kozar RA, Peng Z, Zhang R, et al. Plasma restoration of endothelial glycocalyx in a rodent model of hemorrhagic shock[J]. Anesth Analg, 2011, 112(6): 1289-1295.
[26]
Peng Z, Pati S, Potter D, et al. Fresh frozen plasma lessens pulmonary endothelial inflammation and hyperpermeability after hemorrhagic shock and is associated with loss of syndecan 1[J]. Shock, 2013, 40(3): 195-202.
[27]
Cui N, Wang H, Long Y, et al. Dexamethasone Suppressed LPS-Induced Matrix Metalloproteinase and Its Effect on Endothelial Glycocalyx Shedding[J]. Mediators Inflamm, 2015, 2015: 912726.
[28]
Lin MC, Lin CF, Li CF, et al. Anesthetic propofol overdose causes vascular hyperpermeability by reducing endothelial glycocalyx and ATP production[J]. Int J Mol Sci, 2015, 16(6): 12092-12107.
[29]
Turnage RH, Nwariaku F, Murphy J, et al. Mechanisms of pulmonary microvascular dysfunction during severe burn injury[J]. World J Surg, 2002, 26(7): 848-853.
[30]
Ni YF, Wang J, Yan XL, et al. Histone deacetylase inhibitor, butyrate, attenuates lipopolysaccharide-induced acute lung injury in mice[J]. Respir Res, 2010, 11: 33.
[31]
Li N, Liu XX, Hong M, et al. Sodium butyrate alleviates LPS-induced acute lung injury in mice via inhibiting HMGB1 release[J]. Int Immunopharmacol, 2018, 56: 242-248.
[32]
Liu J, Chang G, Huang J, et al. Sodium Butyrate Inhibits the Inflammation of Lipopolysaccharide-Induced Acute Lung Injury in Mice by Regulating the Toll-Like Receptor 4/Nuclear Factor κB Signaling Pathway[J]. J Agric Food Chem, 2019, 67(6): 1674-1682.
[33]
Atkinson JJ, Senior RM. Matrix metalloproteinase-9 in lung remodeling[J]. Am J Respir Cell Mol Biol, 2003, 28(1): 12-24.
[34]
Legrand C, Gilles C, Zahm JM, et al. Airway epithelial cell migration dynamics: MMP-9 role in cell extracellular matrix remodeling[J]. J Cell Biol, 1999, 146(2): 517-529.
[35]
Asuthkar S, Velpula KK, Nalla AK, et al. Irradiation-induced angiogenesis is associated with an MMP-9-miR-494-syndecan-1 regulatory loop in medulloblastoma cells[J]. Oncogene, 2014, 33(15): 1922-1933.
[36]
Brule S, Charnaux N, Sutton A, et al. The shedding of syndecan-4 and syndecan-1 from HeLa cells and human primary macrophages is accelerated by SDF-1/CXCL12 and mediated by the matrix metalloproteinase-9[J]. Glycobiology, 2006, 16(6): 488-501.
[37]
Purushothaman A, Chen L, Yang Y, et al. Heparanase stimulation of protease expression implicates it as a master regulator of the aggressive tumor phenotype in myeloma[J]. J Biol Chem, 2008, 283(47): 32628-32636.
[38]
Bauer AT, Bürgers HF, Rabie T, et al. Matrix metalloproteinase-9 mediates hypoxia-induced vascular leakage in the brain via tight junction rearrangement[J]. J Cereb Blood Flow Metab, 2010, 30(4): 837-848.
[39]
Kabel AM, Omar MS, Elmaaboud MAA. Amelioration of bleomycin-induced lung fibrosis in rats by valproic acid and butyrate: Role of nuclear factor kappa-B, proinflammatory cytokines and oxidative stress[J]. Int Immunopharmacol, 2016, 39: 355-342.
[40]
Vieira RS, Castoldi A, Basso PJ, et al. Butyrate Attenuates Lung Inflammation by Negatively Modulating Th9 Cells[J]. Front Immunol, 2019, 10: 67.
[41]
Tang FB, Dai YL, Zhou GY, et al. Valproic acid treatment inhibits vasopermeability and improves survival in rats with lethal scald injury[J]. J Burn Care Res, 2018, 39(2): 209-217.
[42]
Forsythe JA, Jiang BH, Iyer NV, et al. Activation of vascular endothelial growth factor gene transcription by hypoxiainducible factor 1[J]. Mol Cell Biol, 1996, 16(9): 4604-4613.
[1] 涂家金, 廖武强, 刘金晶, 涂志鹏, 毛远桂. 严重烧伤患者鲍曼不动杆菌血流感染的危险因素及预后分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 491-497.
[2] 王成, 张慧君, 覃凤均, 陈辉. 网状植皮与ReCell表皮细胞种植在深Ⅱ度烧伤治疗中的疗效对比[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 498-502.
[3] 姚咏明. 如何精准评估烧伤脓毒症患者免疫状态[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 552-552.
[4] 中华医学会烧伤外科学分会小儿烧伤学组. 儿童烧伤早期休克液体复苏专家共识(2023版)[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 371-376.
[5] 蔡柔妹, 曾洁梅, 黄伟丽, 谢文敏, 刘燕丹, 吴漫君, 蔡楚燕. 利用QC小组干预降低经烧伤创面股静脉置管导管相关性感染发生率的临床观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 399-404.
[6] 茹天峰, 戴浩楠, 袁林, 吴坤平, 谢卫国. 对肌肉超声在严重烧伤患者肌肉性能评估中应用的效果观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 197-203.
[7] 杨姣, 王玲, 古兰, 安慎通, 胡大海, 韩军涛. 对艾司氯胺酮在烧伤后瘢痕手术患儿静脉穿刺中的应用效果观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 210-216.
[8] 李峰, 黎君友, 冯书堂, 李国平, 杨洁蓉. 对GGTA1/β4GalNT2双基因敲除近交系五指山小型猪皮进行异种移植的效果观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 241-248.
[9] 刘晓彬, 朱峰. 危重烧伤患者肾功能亢进的药物治疗[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 260-264.
[10] 肖仕初. 微型皮移植的创新与应用[J]. 中华损伤与修复杂志(电子版), 2023, 18(02): 184-184.
[11] 李东杰, 贾晓明. 加强研究皮肤低温损伤机制以提高皮肤储存质量[J]. 中华损伤与修复杂志(电子版), 2023, 18(02): 93-97.
[12] 何泽亮, 李锦, 张程亮, 随振阳, 安亮恩, 刘玲玲, 姚媛媛, 张聚磊, 仇树林, 李晓东. 采用超声清创联合负压吸引疗法治疗深度烧伤溶痂创面的临床观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(02): 123-127.
[13] 刘立, 陈诚, 李新科, 刘凯, 屠昌明. 血清IL-6、hs-CRP、MMP-9联合检测在腹股沟疝无张力修补术预后评价中的价值分析[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(04): 405-409.
[14] 王燕, 郭蕊, 王淑杰. 老年烧伤气管切开患者死亡风险诊断模型构建及对策分析[J]. 中华诊断学电子杂志, 2023, 11(04): 249-253.
[15] 高雷, 李全, 巴雅力嘎, 陈强, 侯智慧, 曹胜军, 巴特. 重度烧伤患者血小板外泌体对凝血功能调节作用的初步研究[J]. 中华卫生应急电子杂志, 2023, 09(03): 149-154.
阅读次数
全文


摘要