切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2021, Vol. 16 ›› Issue (05) : 449 -452. doi: 10.3877/cma.j.issn.1673-9450.2021.05.014

综述

生物组织工程中细胞外基质成分促进创面愈合的研究进展
寇佳慧1, 张梦圆1, 张宝林1,()   
  1. 1. 030001 太原,山西医科大学第一医院整形美容烧伤外科
  • 收稿日期:2021-07-25 出版日期:2021-10-01
  • 通信作者: 张宝林

Research progress of extracellular matrix components in promoting wound healing in biological tissue engineering

Jiahui Kou1, Mengyuan Zhang1, Baolin Zhang1,()   

  1. 1. Department of Plastic and Aesthetic Burn Surgery, First Hospital of Shanxi Medical University, Taiyuan 030001, China
  • Received:2021-07-25 Published:2021-10-01
  • Corresponding author: Baolin Zhang
引用本文:

寇佳慧, 张梦圆, 张宝林. 生物组织工程中细胞外基质成分促进创面愈合的研究进展[J]. 中华损伤与修复杂志(电子版), 2021, 16(05): 449-452.

Jiahui Kou, Mengyuan Zhang, Baolin Zhang. Research progress of extracellular matrix components in promoting wound healing in biological tissue engineering[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2021, 16(05): 449-452.

创面愈合是一个复杂的调控过程,与诸多因素相关,在生物工程材料的运用方面,通过模拟细胞外基质(ECM)的环境,搭建出最佳空间结构的修复材料,从而调控创面修复的过程。近年来,模拟ECM环境的生物组织材料有很多,对创面愈合也都有着一定的促进作用。本综述将从ECM调控促进创面愈合机制方面进行阐述,从而为临床促进创面修复提供新思路。

Wound healing is a complex process of regulation and control, which is related to many factors. In the application of bioengineering materials, by simulating the environment of extracellular matrix(ECM), a repair material with the best spatial structure is constructed to regulate the process of wound healing. In recent years, there are many biological tissue materials that simulate the ECM environment, and they also have a certain promoting effect on wound healing. This review will explain the mechanism of ECM regulation and promotion of wound healing, so as to provide new ideas for clinical promotion of wound healing.

[1]
Cheng B, Jiang Y, Fu X, et al. Epidemiological characteristics and clinical analyses of chronic cutaneous wounds of inpatients in China: Prevention and control[J]. Wound Repair Regen, 2020, 28(5): 623-630.
[2]
Gurtner GC, Werner S, Barrandon Y, et al. Wound repair and regeneration[J]. Nature, 2008, 453(7193): 314-321.
[3]
Lee YJ, Baek SE, Lee S, et al. Wound-healing effect of adipose stem cell-derived extracellular matrix sheet on full-thickness skin defect rat model: Histological and immunohistochemical study[J]. Int Wound J, 2019, 16(1): 286-296.
[4]
Sun L, Li J, Gao W, et al. Coaxial nanofibrous scaffolds mimicking the extracellular matrix transition in the wound healing process promoting skin regeneration through enhancing immunomodulation[J]. Mater Chem B, 2021, 9(5): 1395-1405.
[5]
Rodríguez-Cabello JC, González de Torre I, Iba?ez-Fonseca A, et al. Bioactive scaffolds based on elastin-like materials for wound healing[J]. Adv Drug Deliv Rev, 2018, 129: 118-133.
[6]
陈佳,刘青武,何秀娟,等. 细胞外基质在皮肤创面修复中的研究进展[J]. 中国临床药理学与治疗学2019, 24(6): 716-720.
[7]
Piperigkou Z, Götte M, Theocharis AD, et al. Insights into the key roles of epigenetics in matrix macromolecules-associated wound healing[J]. Adv Drug Deliv Rev, 2018, 129: 16-36.
[8]
Mithieux SM, Aghaei-Ghareh-Bolagh B, Yan L, et al. Tropoelastin Implants That Accelerate Wound Repair[J]. Adv Healthc Mater, 2018, 7(10): e1701206.
[9]
Hou J, Chen L, Liu Z, et al. Sustained release of N-acetylcysteine by sandwich structured polycaprolactone/collagen scaffolds for wound healing[J]. Biomed Mater Res A, 2019, 107(7): 1414-1424.
[10]
罗高兴,吴军. 现代功能材料促进皮肤创面修复[J]. 中华烧伤杂志2020, 36(12): 1113-1116.
[11]
Toole BP, Slomiany MG. Hyaluronan: a constitutive regulator of chemoresistance and malignancy in cancer cells[J]. Semin Cancer Biol, 2008, 18(4): 244-250.
[12]
Graça MFP, Miguel SP, Cabral CSD, et al. Hyaluronic acid-Based wound dressings: A review[J]. Carbohydr Polym, 2020, 241: 116364.
[13]
Nguyen TH. The effect of oxidation degree and volume ratio of components on properties and applications of in situ cross-linking hydrogels based on chitosan and hyaluronic acid[J]. Mater Sci Eng C Mater Biol Appl, 2019, 103: 109670.
[14]
Yang R, Liu X, Ren Y, et al. Injectable adaptive self-healing hyaluronic acid/poly (γ-glutamic acid) hydrogel for cutaneous wound healing[J]. Acta Biomater, 2021, 127: 102-115.
[15]
Hussein Y, El-Fakharany EM, Kamoun EA, et al. Electrospun PVA/hyaluronic acid/L-arginine nanofibers for wound healing applications: Nanofibers optimization and in vitro bioevaluation[J]. Int J Biol Macromol, 2020, 164: 667-676.
[16]
Li J, Du R, Bian Q, et al. Topical application of HA-g-TEMPO accelerates the acute wound healing via reducing reactive oxygen species (ROS) and promoting angiogenesis[J]. Int J Pharm, 2021, 597: 120328.
[17]
Mondal S, Adhikari N, Banerjee S, et al. Matrix metalloproteinase-9 (MMP-9) and its inhibitors in cancer: A minireview[J]. Eur J Med Chem, 2020, 194: 112260.
[18]
Bari E, Di Silvestre D, Mastracci L, et al. GMP-compliant sponge-like dressing containing MSC lyo-secretome: Proteomic network of healing in a murine wound model[J]. Eur J Pharm Biopharm, 2020, 155: 37-48.
[19]
Wu P, Zhang B, Shi H, et al. MSC-exosome: A novel cell-free therapy for cutaneous regeneration[J]. Cytotherapy, 2018, 20(3): 291-301.
[20]
Du HC, Jiang L, Geng WX, et al. Growth Factor-Reinforced ECM Fabricated from Chemically Hypoxic MSC Sheet with Improved In Vivo Wound Repair Activity[J]. Biomed Res Int, 2017, 2017: 2578017.
[21]
Wilgus TA. Growth factor-extracellular matrix interactions regulate wound repair[J]. Adv Wound Care, 2012, 1(6): 249-254.
[22]
生物三维打印墨水硬度调控间充质干细胞命运决定的研究[J]. 中华烧伤杂志2020, 36(9): 860.
[23]
Bari E, Di Silvestre D, Mastracci L, et al. GMP-compliant sponge-like dressing containing MSC lyo-secretome: Proteomic network of healing in a murine wound model[J]. Eur J Pharm Biopharm, 2020, 155: 37-48.
[24]
Almine JF, Wise SG, Hiob M, et al. Elastin sequences trigger transient proinflammatory responses by human dermal fibroblasts[J]. FASEB J, 2013, 27(9): 3455-3465.
[25]
Wen Q, Mithieux SM, Weiss AS. Elastin Biomaterials in Dermal Repair[J]. Trends Biotechnol, 2020, 38(3): 280-291.
[26]
Yu Y, Wise SG, Michael PL, et al. Characterization of Endothelial Progenitor Cell Interactions with Human Tropoelastin[J]. PLoS One, 2015, 10(6): e0131101.
[27]
Martino M, Perri T, Tamburro AM. Biopolymers and biomaterials based on elastomeric Proteins[J]. Macromol Biosci, 2002, 2: 319-328.
[28]
Kawabata S, Kawai K, Somamoto S, et al. The development of a novel wound healing material, silk-elastin sponge[J]. J Biomater Sci Polym Ed, 2017, 28(18): 2143-2153.
[29]
Tracy LE, Minasian RA, Caterson EJ. Extracellular Matrix and Dermal Fibroblast Function in the Healing Wound[J]. Adv Wound Care (New Rochelle), 2016, 5(3): 119-136.
[30]
Kondyurina I, Wise SG, Ngo AKY, et al. Plasma mediated protein immobilisation enhances the vascular compatibility of polyurethane with tissue matched mechanical properties[J]. Biomed Mater, 2017, 12(4): 045002.
[31]
Hiob MA, Trane AE, Wise SG, et al. Tropoelastin enhances nitric oxide production by endothelial cells[J]. Nanomedicine (Lond), 2016, 11(12): 1591-1597.
[32]
Landau S, Szklanny AA, Yeo GC, et al. Tropoelastin coated PLLA-PLGA scaffolds promote vascular network formation[J]. Biomaterials, 2017, 122: 72-82.
[33]
何秀娟,林燕,刘青武,等. 皮肤成纤维细胞在创面愈合中的研究进展[J/CD]. 中华损伤与修复杂志(电子版), 202116(1): 74-77.
[34]
Ying H, Zhou J, Chen J, et al. In situ formed collagen-hyaluronic acid hydrogel as biomimetic dressing for promoting spontaneous wound healing[J]. Mater Sci Eng C Mater Biol Appl, 2019, 101: 487-498.
[35]
Yang Y, Dong Z, Li M, et al. Graphene Oxide/Copper Nanoderivatives-Modified Chitosan/Hyaluronic Acid Dressings for Facilitating Wound Healing in Infected Full-Thickness Skin Defects[J]. Int J Nanomedicine, 2020, 15: 8231-8247.
[36]
Tarusha L, Paoletti S, Travan A, et al. Alginate membranes loaded with hyaluronic acid and silver nanoparticles to foster tissue healing and to control bacterial contamination of non-healing wounds[J]. J Mater Sci Mater Med, 2018, 29(3): 22.
[37]
Wu Z, Tang Y, Fang H, et al. Decellularized scaffolds containing hyaluronic acid and EGF for promoting the recovery of skin wounds[J]. J Mater Sci Mater Med, 2015, 26(1): 5322.
[38]
Hsu YY, Liu KL, Yeh HH, et al. Sustained release of recombinant thrombomodulin from cross-linked gelatin/hyaluronic acid hydrogels potentiate wound healing in diabetic mice[J]. Eur J Pharm Biopharm, 2019, 135: 61-71.
[39]
Tokatlian T, Cam C, Segura T. Porous hyaluronic acid hydrogels for localized nonviral DNA delivery in a diabetic wound healing model[J]. Adv Healthc Mater, 2015, 4(7): 1084-1091.
[40]
Morissette Martin P, Grant A, Hamilton DW, et al. Matrix composition in 3-D collagenous bioscaffolds modulates the survival and angiogenic phenotype of human chronic wound dermal fibroblasts[J]. Acta Biomater, 2019, 83: 199-210.
[41]
Liu K, Chen C, Zhang H, et al. Adipose stem cell-derived exosomes in combination with hyaluronic acid accelerate wound healing through enhancing re-epithelialization and vascularization[J]. Br J Dermatol, 2019, 181(4): 854-856.
[42]
Haage A, Goodwin K, Whitewood A, et al. Talin Autoinhibition Regulates Cell-ECM Adhesion Dynamics and Wound Healing In Vivo[J]. Cell Rep, 2018, 25(9): 2401-2416. e5.
[1] 钱嘉天, 符培亮. 3D打印脱细胞的细胞外基质修复软骨缺损的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 368-375.
[2] 陈严城, 符培亮. 组织工程技术在骨软骨缺损中应用的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 376-384.
[3] 薛清佩. 玻璃酸钠注射对半月板撕裂患者疗效的影响[J]. 中华关节外科杂志(电子版), 2023, 17(02): 288-291.
[4] 周子慧, 李恭驰, 李炳辉, 王知, 刘慧真, 王卉, 邹利军. 细胞自噬在创面愈合中作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 542-546.
[5] 陈继秋, 朱世辉. 皮肤牵张装置的临床应用现状[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 451-453.
[6] 王雪, 程微, 苏建东. 微针法表皮移植应用的新进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 270-273.
[7] 魏忠玲, 陈赟, 叶美霞, 杨珺雯, 袁竺方. 不同种类敷料治疗糖尿病足疗效比较的网状荟萃分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(02): 157-165.
[8] 中国老年医学学会烧创伤分会, 中国生物材料学会烧创伤创面修复材料分会. 中国糖尿病足截肢(趾)治疗专家共识(2022年版)[J]. 中华损伤与修复杂志(电子版), 2023, 18(01): 1-9.
[9] 徐燕群, 李平, 杨兴, 薛慧. 脂多糖通过促进透明质酸受体CD44向核转移介导牙周膜细胞白细胞介素6释放[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 335-344.
[10] 王湘滔, 张爱娟, 王万春, 王芳萍, 徐颖婕, 孟洋. 中药白及在口腔疾病中的研究与应用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 371-375.
[11] 钟文文, 李科, 刘碧好, 蔡炳, 脱颖, 叶雷, 马波, 瞿虎, 汪中扬, 王德娟, 邱剑光. 不同比例聚乳酸/丝素蛋白复合支架在兔尿道缺损修复中的疗效[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 516-522.
[12] 张升敏, 黄健斌, 陈亮, 马克强. Ⅰ、Ⅲ型胶原蛋白在成人腹股沟斜疝及直疝患者腹横筋膜和疝囊的表达[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(05): 516-521.
[13] 文华伟, 汤明, 方禹舜, 李亚楠, 张绍华, 张青松. 生物材料增强肩袖腱骨愈合的研究进展[J]. 中华肩肘外科电子杂志, 2023, 11(03): 273-278.
[14] 马聪, 李雪靖, 郑晓佐, 张晓阳, 段坤峰, 刘国强, 郄素会. 关节腔内注射富血小板血浆与透明质酸钠治疗Ⅰ-Ⅲ期膝骨关节炎的对比研究[J]. 中华老年骨科与康复电子杂志, 2023, 09(05): 282-288.
[15] 秦维, 王丹, 孙玉, 霍玉玲, 祝素平, 郑艳丽, 薛瑞. 血清层粘连蛋白、Ⅳ型胶原蛋白对代偿期肝硬化食管胃静脉曲张出血的预测价值[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 447-451.
阅读次数
全文


摘要