切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2025, Vol. 20 ›› Issue (03) : 241 -247. doi: 10.3877/cma.j.issn.1673-9450.2025.03.009

论著

高迁移率族蛋白B1 在严重烧伤延迟复苏大鼠肝损伤中的作用
贾昊1,2, 刘兆兴1, 李大伟1, 李培真1, 张泽瑾1, 刘力维1, 申传安1,()   
  1. 1. 100048 北京,解放军总医院第四医学中心烧伤整形医学部
    2. 100853 北京,解放军医学院
  • 收稿日期:2025-03-05 出版日期:2025-06-01
  • 通信作者: 申传安
  • 基金资助:
    国家重点研发计划(2024YFC3016604)

Role of high mobility group protein B1 in liver injury associated with delayed resuscitation following severe burn in rats

Hao Jia1,2, Zhaoxing Liu1, Dawei Li1, Peizhen Li1, Zejin Zhang1, Liwei Liu1, Chuan'an Shen1,()   

  1. 1. Senior Department of Burns and Plastic Surgery,the Fourth Medical Center of PLA General Hospital,Beijing 100048,China
    2. Chinese PLA Medical School,Beijing 100853,China
  • Received:2025-03-05 Published:2025-06-01
  • Corresponding author: Chuan'an Shen
引用本文:

贾昊, 刘兆兴, 李大伟, 李培真, 张泽瑾, 刘力维, 申传安. 高迁移率族蛋白B1 在严重烧伤延迟复苏大鼠肝损伤中的作用[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(03): 241-247.

Hao Jia, Zhaoxing Liu, Dawei Li, Peizhen Li, Zejin Zhang, Liwei Liu, Chuan'an Shen. Role of high mobility group protein B1 in liver injury associated with delayed resuscitation following severe burn in rats[J/OL]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2025, 20(03): 241-247.

目的

探讨高迁移率族蛋白B1(HMGB1)在严重烧伤延迟复苏大鼠肝损伤中的作用和初步机制。

方法

将32只雄性SD大鼠按随机数字表法分为假伤组、烧伤即刻复苏组、烧伤延迟复苏组和烧伤延迟复苏+HMGB1中和抗体组,每组8只。以大鼠背部98 ℃水浴12 s 制备30%总体表面积(TBSA)Ⅲ度烧伤模型;假伤组大鼠背部浸于37 ℃温水中12 s 模拟烧伤。烧伤即刻复苏组于伤后即刻、烧伤延迟复苏组及烧伤延迟复苏+HMGB1中和抗体组于伤后6 h腹腔注射乳酸钠林格液(4 ml·kg-1·1%TBSA-1)模拟伤后即刻复苏和延迟复苏;假伤组不进行液体复苏。各组于伤后24 h采集下腔静脉血及肝组织。采用酶联免疫吸附测定法分析伤后血清HMGB1蛋白含量,全自动生化检测分析仪检测血清天冬氨酸转氨酶(AST)和丙氨酸转氨酶(ALT)含量,苏木精-伊红(HE)染色观察肝组织病理学变化,免疫组化法分析肝组织HMGB1和转化生长因子(TGF-β)表达,Western blot检测肝组织 B 淋巴细胞瘤-2蛋白(Bcl-2)和Bcl-2 相关X蛋白(Bax)表达,免疫荧光染色观察肝组织肿瘤坏死因子α(TNF-α)表达。

结果

与假伤组比较,烧伤即刻复苏组血清和肝组织中HMGB1含量以及血清ALT、AST水平均显著升高(P<0.05)。与烧伤即刻复苏组比较,烧伤延迟复苏组血清和肝组织中HMGB1含量以及血清ALT、AST水平均显著升高(P<0.001)。与烧伤延迟复苏组比较,烧伤延迟复苏+HMGB1中和抗体组血清和肝组织中HMGB1含量以及血清ALT、AST水平均显著下降(P<0.05)。伤后24 h,假伤组大鼠肝组织中细胞形态正常,排列规则,未见明显炎症细胞浸润;烧伤即刻复苏组大鼠肝脏组织轻微损伤,肝小叶结构基本保持完整,肝细胞呈现轻度水肿或细胞质肿胀,未见明显的坏死或炎症反应;烧伤延迟复苏组大鼠肝组织中细胞排列紊乱,伴有弥漫性的脂肪变性和中等量炎症细胞浸润;烧伤延迟复苏+HMGB1中和抗体组大鼠肝组织中细胞排列较规则,可见散在的脂肪变性,伴有少量炎症细胞浸润。与烧伤延迟复苏组比较,烧伤延迟复苏+HMGB1中和抗体组肝组织损伤评分及肝组织TNF-α表达水平显著下降(P<0.05),TGF-β表达水平差异无统计学意义(P>0.05)。与烧伤延迟复苏组比较,烧伤延迟复苏+HMGB1中和抗体组肝组织中抗凋亡蛋白Bcl-2表达显著增加(P=0.009),促凋亡蛋白Bax表达显著降低(P=0.021)。

结论

HMGB1介导了严重烧伤延迟复苏后的肝损伤,该作用可能与其促进细胞凋亡和炎症反应有关。

Objective

To investigate the role and preliminary mechanism of high mobility group protein B1 (HMGB1) in liver injury following delayed resuscitation in rats with severe burns.

Methods

Thirty-two male Sprague-Dawley (SD) rats were randomly divided into sham group, immediate resuscitation group,delayed resuscitation group, and delayed resuscitation+HMGB1-neutralizing antibody group,with 8 rats in each group.A 30% total body surface area (TBSA) full-thickness burn model was established by immersing the rats' dorsum in 98 ℃ water for 12 seconds.Sham group rats were immersed in 37 ℃ water for 12 seconds.The immediate resuscitation group received intraperitoneal injection of lactated Ringer's solution (4 ml·kg-1·1%TBSA-1)immediately after injury, while the delayed resuscitation group and delayed resuscitation+HMGB1-neutralizing antibody group received the same fluid at 6 hours post-injury.The sham group received no resuscitation.Blood and liver tissue samples were collected at 24 hours post-injury.Serum HMGB1 levels were analyzed via enzymelinked immunosorbent assay (ELISA).Serum aspartate aminotransferase (AST) and alanine aminotransferase(ALT) levels were measured using an automated biochemical analyzer.Hematoxylin-eosin (HE) staining was used to assess liver histopathology.Immunohistochemistry was employed to assess the expression of HMGB1 and transforming growth factor-beta (TGF-β) in liver tissues.Western blotting was utilized to quantify the expression of B-cell lymphoma-2 (Bcl-2) and Bcl-2-associated X protein (Bax).Immunofluorescence staining was utilized for the detection of tumor necrosis factor-alpha (TNF-α) expression.

Results

Compared to the sham group, HMGB1 levels in serum and liver tissues, and serum ALT, AST levels were significantly elevated in the immediate resuscitation group (P<0.05).Compared to the immediate resuscitation group, the delayed resuscitation group showed further increases in HMGB1 and serum ALT, AST levels (P<0.001).Compared to the delayed resuscitation group, HMGB1 levels in serum and liver tissues, and serum ALT, AST levels in the delayed resuscitation+HMGB1-neutralizing antibody group were significantly reduced (P<0.05).Histologically,the sham group exhibited normal hepatocyte morphology and no inflammation.The immediate resuscitation group exhibited mild liver injury, with the basic preservation of the hepatic lobule structure.In this group,liver cells exhibited mild edema or cytoplasmic swelling, and no obvious necrosis or inflammatory response was observed.The delayed resuscitation group showed disordered cell arrangement, diffuse fatty degeneration,and moderate inflammation in liver tissues, while the delayed resuscitation + HMGB1-neutralizing antibody group exhibited reduced fat deposition and mild inflammation.Compared to the delayed resuscitation burn group, the liver tissue injury scores and TNF-α expression were lower in the delayed resuscitation + HMGB1-neutralizing antibody group (P<0.05), with no significant change in TGF-β (P>0.05).Compared with the delayed resuscitation group, the expression of the anti-apoptotic protein Bcl-2 in the liver tissue of the delayed resuscitation + HMGB1-neutralizing antibody group was significantly increased (P=0.009), while the expression of the pro-apoptotic protein Bax was significantly decreased (P=0.021).

Conclusion

HMGB1 mediates liver injury after delayed resuscitation in severe burns, potentially by facilitating apoptosis and inflammatory responses.

图1 大鼠严重烧伤后肝组织HMGB1免疫组化染色(×200)
表1 各组大鼠血清及肝组织中HMGB1水平比较(ng/ml,±s
表2 各组大鼠血清AST和ALT水平比较(U/L,±s
图2 大鼠严重烧伤后肝组织HE染色 (×200)
图3 大鼠严重烧伤后肝组织Bcl-2和Bax蛋白检测
表3 各组大鼠肝组织Bcl-2和Bax表达水平比较(U/L,±s
图4 大鼠严重烧伤后肝组织炎症因子检测。A示肝组织TNF-α免疫荧光检测 (×200) ;B示肝组织TGF-β免疫组化检测(×200)
表4 各组大鼠肝组织TNF-α和TGF-β表达水平比较(U/L,±s
[1]
Ashouri S.An introduction to burns[J].Phys Med Rehabil Clin N Am, 2022, 33(4): 871-883.
[2]
Bin Mohamed Ebrahim ME, Mohamed Rizvi Z, Hameed A, et al.Transplant outcomes from deceased donors dying with burns injury, a systematic review[J].Transplant Proc, 2022, 54(7):1730-1736.
[3]
Liu Z, Li D, Yang J, et al.Transcriptome analysis of hepatic injury caused by delayed resuscitation following severe burns in rats[J].J Trauma Acute Care Surg, 2023, 95(4): 549-557.
[4]
Liu Z, Li D, Liu X, et al.Elevated serum procalcitonin to predict severity and prognosis of extensive burns[J].J Invest Surg, 2022,35(7): 1510-1518.
[5]
Bharath S, Agarwal P, Prabhakar T, et al.Correlation of thermal burn hepatic dysfunction with outcomes[J].Burns, 2024, 50(3):611-615.
[6]
Tapking C, Kilian K, Hundeshagen G, et al.Hepatic functional pathophysiology and morphological damage following severe burns: a systematic review and meta-analysis[J].J Burn Care Res, 2022, 43(5): 1074-1080.
[7]
Liu Z, Li D, Ma J, et al.A potential resuscitation route on battlefield: immediate intraperitoneal fluid administration post-burn shows satisfactory fluid absorption and anti-shock effects[J].Mil Med, 2023, 188(9-10): e3000-e3009.
[8]
Liu S, Chen HZ, Xu ZD, et al.Sodium butyrate inhibits the production of HMGB1 and attenuates severe burn plus delayed resuscitation-induced intestine injury via the p38 signaling pathway[J].Burns, 2019, 45(3): 649-658.
[9]
Shang J, Zhao F, Cao Y, et al.HMGB1 mediates lipopolysaccharide-induced macrophage autophagy and pyroptosis[J].BMC Mol Cell Biol, 2023, 24(1): 2.
[10]
Zhao ZB, Marschner JA, Iwakura T, et al.Tubular epithelial cell HMGB1 promotes AKI-CKD transition by sensitizing cycling tubular cells to oxidative stress: a rationale for targeting HMGB1 during AKI recovery[J].J Am Soc Nephrol, 2023, 34(3): 394-411.
[11]
Huang J, Wang Z, Zhang X, et al.Lipidomics study of sepsis-induced liver and lung injury under anti-HMGB1 intervention[J].J Proteome Res, 2023, 22(6): 1881-1895.
[12]
Radzikowska-Büchner E, Łopuszyńska I, Flieger W, et al.An overview of recent developments in the management of burn injuries[J].Int J Mol Sci, 2023, 24(22): 16357.
[13]
Huang R, Yao Y, Li L, et al.A 10-year mono-center study on patients with burns ≥70% TBSA: prediction model construction and multicenter validation-retrospective cohor[tJ].Int J Surg,2025, 111(1): 55-69.
[14]
Gwyn-Jones A, Afolabi T, Bonney S, et al.Major burns in adults:a practice review[J].Emerg Med J, 2024, 41(10): 630-634.
[15]
Kawashima K, Andreata F, Beccaria CG, et al.Priming and maintenance of adaptive immunity in the live[rJ].Annu Rev Immunol, 2024, 42(1): 375-399.
[16]
Bharath S, Agarwal P, Prabhakar T, et al.Correlation of thermal burn hepatic dysfunction with outcomes[J].Burns, 2024, 50(3):611-615.
[17]
Chen R, Kang R, Tang D.The mechanism of HMGB1 secretion and release[J].Exp Mol Med, 2022, 54(2): 91-102.
[18]
Ding HS, Huang Y, Qu JF, et al.Panaxynol ameliorates cardiac ischemia/reperfusion injury by suppressing NLRP3-induced pyroptosis and apoptosis via HMGB1/TLR4/NF-κB axis[J].Int Immunopharmacol, 2023, 121: 110222.
[19]
Du S, Zhang X, Jia Y, et al.Hepatocyte HSPA12A inhibits macrophage chemotaxis and activation to attenuate liver ischemia/reperfusion injury via suppressing glycolysis-mediated HMGB1 lactylation and secretion of hepatocytes[J].Theranostics, 2023,13(11): 3856-3871.
[20]
Yang X, Chatterjee V, Zheng E, et al.Burn injury-induced extracellular vesicle production and characteristics[J].Shock,2022, 57(6): 228-242.
[21]
Muraoka WT, Granados JC, Gomez BI, et al.Burn resuscitation strategy influences the gut microbiota-liver axis in swine[J].Sci Rep, 2020, 10(1): 15655.
[22]
Alaaeldin R, Bakkar SM, Mohyeldin RH, et al.Azilsartan modulates HMGB1/NF-κB/p38/ERK1/2/JNK and apoptosis pathways during renal ischemia reperfusion injury[J].Cells,2023, 12(1): 185.
[23]
Pantalone D, Bergamini C, Martellucci J, et al.The role of DAMPS in burns and hemorrhagic shock immune response:pathophysiology and clinical issues.Review[J].Int J Mol Sci,2021, 22(13): 7020.
[24]
Xue Q, Kang R, Klionsky DJ, et al.Copper metabolism in cell death and autophagy[J].Autophagy, 2023, 19(8): 2175-2195.
[25]
Starkova T, Polyanichko A, Artamonova T, et al.Structural characteristics of high-mobility group proteins HMGB1 and HMGB2 and their interaction with DNA[J].Int J Mol Sci,2023, 24(4): 3577.
[26]
Yuan J, Ofengeim D.A guide to cell death pathways[J].Nat Rev Mol Cell Biol, 2024, 25(5): 379-395.
[27]
Tang D, Kang R, Zeh HJ, et al.The multifunctional protein HMGB1: 50 years of discovery[J].Nat Rev Immunol, 2023,23(12): 824-841.
[28]
Huang Y, Jiang W, Zhou R.DAMP sensing and sterile inflammation: intracellular, intercellular and inter-organ pathways[J].Nat Rev Immunol, 2024, 24(10): 703-719.
[29]
Jin L, Zhu Z, Hong L, et al.ROS-responsive 18β-glycyrrhetic acid-conjugated polymeric nanoparticles mediate neuroprotection in ischemic stroke through HMGB1 inhibition and microglia polarization regulation[J].Bioact Mater, 2023, 19: 38-49.
[30]
Deng C, Zhao L, Yang Z, et al.Targeting HMGB1 for the treatment of sepsis and sepsis-induced organ injury[J].Acta Pharmacol Sin, 2022, 43(3): 520-528.
[31]
Koide H, Kiyokawa C, Okishima A, et al.Design of an anti-HMGB1 synthetic antibody for in vivo ischemic/reperfusion injury therapy[J].J Am Chem Soc, 2023, 145(42): 23143-23151.
[1] 李培真, 刘海亮, 李大伟, 贾昊, 张泽瑾, 刘力维, 申传安. 重度烧伤患者发生早期急性肾损伤危险因素分析及预测模型建立[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(03): 199-205.
[2] 余婷, 戴昕吭, 王园, 李雅鑫, 冯苹, 何俊生, 肖仕初, 伍国胜. 大面积烧伤创面动静脉置管及维护策略的构建[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(03): 220-226.
[3] 侯亚红, 李娜, 张霞霞, 邸红军. 大面积烧伤住院患者临床特征及诊疗情况分析[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(02): 128-132.
[4] 沈婷, 石磊磊, 赵海洋, 张美霞, 焦晓春, 陈宝莉, 王志娟, 王立娜, 赵向阳, 周琴. 重度及特重度烧伤患者康复期照护干预方案的多维度构建[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(02): 133-140.
[5] 孙宁, 王光毅, 朱丽菁, 冯苹, 何靖文, 张礼科, 易琟, 邱晨月, 伍国胜. 基于CiteSpace吸入性损伤研究现状和趋势的可视化分析[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(01): 22-29.
[6] 付莉莉, 陈红梅. 严重烧伤患者家属疾病不确定感与照顾负担及生活质量相关性分析[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(01): 36-41.
[7] 张勇, 张立森, 岳良, 张磊磊, 柯海文, 沈运彪. 高原高寒条件下烧伤大鼠代谢指纹图谱绘制及代谢标志物筛选[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(01): 42-54.
[8] 徐思达, 虞耀华, 徐沛, 潘艳艳, 乐欣, 邬薇薇, 范友芬. hsa_circ_0001618通过miR-184/LARP1通路对烧伤后皮肤成纤维细胞增殖、迁移和凋亡的影响[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(01): 61-67.
[9] 唐浩然, 周彪, 巴特, 李洋洋. 严重烧伤后脓毒症早期诊断相关生物标记物的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(01): 70-74.
[10] 沈拓, 朱峰. 异质性耐药在烧伤非发酵革兰氏阴性杆菌感染中的意义[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(01): 75-80.
[11] 李煜, 王鹏, 陆翮, 冯蓉琴, 韩军涛. 采用低频脉冲电刺激治疗深Ⅱ度烧伤创面的临床观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 474-478.
[12] 彭玲, 吴红, 宛仕勇, 陈斓, 叶子青, 周静. 胶原酶软膏联合水胶体敷料应用于深Ⅱ度烧伤创面治疗的效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 511-516.
[13] 林同辉, 杨卫玺. 股前外侧穿支皮瓣在电烧伤治疗中应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 526-530.
[14] 陈浩, 林梁, 邹来宾, 郭胜蓝. 成石饮食诱发胆结石及肝损伤机制的研究[J/OL]. 中华普通外科学文献(电子版), 2025, 19(01): 42-47.
[15] 侯义振, 张鲲, 卢仙明, 张小雷. 膀胱造瘘导致巨大膀胱结石一例报告[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 259-261.
阅读次数
全文


摘要