[1] |
Gurtner GC, Werner S, Barrandon Y, et al. Wound repair and regeneration [J]. Nature, 2008, 453(7193): 314-321.
|
[2] |
蒋建新,王正国. 后基因组学与创伤医学研究 [J]. 中华创伤杂志,2006, 22(7): 481-485.
|
[3] |
Chambers DC, Carew AM, Lukowski SW, et al. Transcriptomics and single-cell RNA-sequencing [J]. Respirology, 2019, 24(1): 29-36.
|
[4] |
Kester L, van Oudenaarden A. c [J]. Cell Stem Cell, 2018, 23(2): 166-179.
|
[5] |
Auer H, Newsom DL, Kornacker K. Expression profiling using Affymetrix GeneChip Microarrays [J]. Methods Mol Biol, 2009, 509: 35-46.
|
[6] |
Roy S, Khanna S, Rink C, et al. Characterization of the acute temporal changes in excisional murine cutaneous wound inflammation by screening of the wound-edge transcriptome [J]. Physiol Genomics, 2008, 34(2): 162-184.
|
[7] |
Feezor RJ, Paddock HN, Baker HV, et al. Temporal patterns of gene expression in murine cutaneous burn wound healing [J]. Physiol Genomics, 2004, 16(3): 341-348.
|
[8] |
Roy S, Biswas S, Khanna S, et al. Characterization of a preclinical model of chronic ischemic wound [J]. Physiol Genomics, 2009, 37(3): 211-224.
|
[9] |
Price JA, Rogers JV, McDougal JN, et al. Transcriptional changes in porcine skin at 7 days following sulfur mustard and thermal burn injury [J]. Cutan Ocul Toxicol, 2009, 28(3): 129-140.
|
[10] |
Seifert AW, Kiama SG, Seifert MG, et al. Skin shedding and tissue regeneration in African spiny mice (Acomys) [J]. Nature, 2012, 489(7417): 561-565.
|
[11] |
Brant JO, Lopez MC, Baker HV, et al. A comparative analysis of gene expression profiles during skin regeneration in Mus and Acomys [J]. PLoS One, 2015, 10(11): e0142931.
|
[12] |
Gawriluk TR, Simkin J, Thompson KL, et al. Comparative analysis of ear-hole closure identifies epimorphic regeneration as a discrete trait in mammals [J]. Nat Commun, 2016, 7: 11164.
|
[13] |
Colwell AS, Longaker MT, Peter Lorenz H. Identification of differentially regulated genes in fetal wounds during regenerative repair [J]. Wound Repair Regen, 2008, 16(3): 450-459.
|
[14] |
Hu MS, Hong WX, Januszyk M, et al. Pathway Analysis of Gene Expression in Murine Fetal and Adult Wounds[J]. Adv Wound Care (New Rochelle), 2018, 7(8): 262-275.
|
[15] |
Keyes BE, Liu SQ, Asare A, et al. Impaired epidermal to dendritic T cell signaling slows wound repair in aged skin [J]. Cell, 2016, 167(5): 1323-1338.
|
[16] |
Sextius P, Marionnet C, Tacheau C, et al. Analysis of gene expression dynamics revealed delayed and abnormal epidermal repair process in aged compared to young skin [J]. Arch Dermatol Res, 2015, 307(4): 351-364.
|
[17] |
Chen L, Arbieva ZH, Guo S, et al. Positional differences in the wound transcriptome of skin and oral mucosa [J]. BMC Genomics, 2010; 11: 471.
|
[18] |
Iglesias-Bartolome R, Uchiyama A, Molinolo AA, et al. Transcriptional signature primes human oral mucosa for rapid wound healing [J]. Sci Transl Med, 2018, 10(451): eaap8798.
|
[19] |
Sass PA, Dabrowski M, Charzynska A, et al. Transcriptomic responses to wounding: meta-analysis of gene expression microarry data [J]. BMC Genomics, 2017, 18(1): 850.
|
[20] |
Leffler M, Derrick KL, McNulty A, et al. Changes of anabolic processes at the cellular and molecular level in chronic wounds under topical negative pressure can be revealed by transcriptome analysis [J]. J Cell Mol Med, 2011, 15(7): 1564-1571.
|
[21] |
Stone RC, Stojadinovic O, Rosa AM, et al. A bioengineered living cell construct activates an acute wound healing response in venous leg ulcers [J]. Sci Transl Med, 2017, 9(371): eaaf8611.
|
[22] |
Pedersen TX, Leethanakul C, Patel V, et al. Laser capture microdissection-based in vivo genomic profiling of wound keratinocytes identifies similarities and differences to squamous cell carcinoma [J]. Oncogene, 2003, 22(25): 3964-3976.
|
[23] |
Ramirez HA, Liang L, Pastar I, et al. Comparative genomic, microRNA, and tissure analyses reveal subtle differences between non-diabetic and diabetic foot skin [J]. PLoS One, 2015, 10(8): e0137133.
|
[24] |
Roy S, Patel D, Khanna S, et al. Transcriptome-wide analysis of blood vessels laser captured from human skin and chronic wound-edge tissue [J]. Proc Natl Acad Sci U S A, 2007, 104(36): 14472-14477.
|
[25] |
Bronneke S, Bruckner B, Sohle J, et al. Genome-wide expression analysis of wounded skin reveals novel genes involved in angiogenesis [J]. Angiogenesis, 2015, 18(3): 361-371.
|
[26] |
Biernaskie J, Paris M, Morozova O, et al. SKPs derive from hair follicle precursors and exhibit properties of adult dermal stem cells [J]. Cell Stem Cell, 2009, 5(6): 610-623.
|
[27] |
Joost S, Jacob T, Sun X, et al. Single-cell transcriptomics of traced epidermal and hair follicle stem cells reveals rapid adaptations during wound healing [J]. Cell Rep, 2018, 25(3): 585-597.
|
[28] |
Wang T, Feng Y, Sun H, et al. miR-21 regulates skin wound healing by targeting multiple aspects of the healing process [J]. Am J Pathol, 2012, 181(6): 1911-1920.
|
[29] |
Wang T, Zhao N, Long S, et al. Downregulation of miR-205 in migrating epithelial tongue facilitates skin wound re-epithelialization by derepressing ITGA5 [J]. BBA-Mol Basis Dis, 2016, 1862(8): 1443-1452.
|
[30] |
Li D, Wang A, Liu X, et al. MicroRNA-132 enhances transition from inflammation to proliferation during wound healing [J]. J Clin Invest, 2015, 125(8): 3008-3026.
|
[31] |
Aunin E, Broadley D, Ahmed MI, et al. Exploring a role for regulatory miRNAs in wound healing during ageing: involvement of miR-200c in wound repair [J]. Sci Rep, 2017, 7(1): 3257.
|
[32] |
Guo L, Xu K, Yan H, et al. MicroRNA expression signature and the therapeutic effect of the microRNA-21 antagomir in hypertrophic scarring [J]. Mol Med Rep, 2017, 15(3): 1211-1221.
|
[33] |
Liu Y, Yang D, Xiao Z, et al. miRNA expression profiles in keloid tissue and corresponding normal skin tissue [J]. Aesthetic Plast Surg, 2012, 36(1): 193-201.
|