[1] |
Cheng B, Jiang Y, Fu X, et al. Epidemiological characteristics and clinical analyses of chronic cutaneous wounds of inpatients in China: Prevention and control[J]. Wound Repair Regen, 2020, 28(5): 623-630.
|
[2] |
Armato U, Freddi G. Editorial: Biomaterials for Skin Wound Repair: Tissue Engineering, Guided Regeneration, and Wound Scarring Prevention[J]. Front Bioeng Biotechnol, 2021, 9: 722327.
|
[3] |
Zhang X, Shu W, Yu Q, et al. Functional Biomaterials for Treatment of Chronic Wound[J]. Front Bioeng Biotechnol, 2020, 8: 516.
|
[4] |
Chen G, Yu Y, Wu X, et al. Wound Healing: Bioinspired Multifunctional Hybrid Hydrogel Promotes Wound Healing[J]. Adv Funct Mater, 2018, 28(33): 1870233.
|
[5] |
胡涛涛,常树森,魏在荣. 损伤周围神经的微环境中巨噬细胞极化成M2表型可有效促进其再生[J]. 中国组织工程研究,2022, 26(14): 2285-2290.
|
[6] |
龙凤强,邹利添,曾远超,等. 九一丹和生肌散治疗褥疮中的意义[J]. 中医临床研究,2015, 7(8): 15-17.
|
[7] |
Czimmerer Z, Daniel B, Horvath A, et al. The Transcription Factor STAT6 Mediates Direct Repression of Inflammatory Enhancers and Limits Activation of Alternatively Polarized Macrophages[J]. Immunity, 2018, 48(1): 75-90. e6.
|
[8] |
Daunton C, Kothari S, Smith L, et al. A history of materials and practices for wound management[J]. Wound Practice & Research: Journal of the Australian Wound Management Association, 2012, 20(4): 174-176, 178-180, 182-186.
|
[9] |
Shah JB. The history of wound care[J]. J Am Col Certif Wound Spec, 2011, 3(3): 65-66.
|
[10] |
Winter GD. Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig[J]. Nature, 1962, 193(4812): 293-294.
|
[11] |
王景辉. 多功能水凝胶设计及其在伤口敷料中的应用研究[D]. 太原:太原理工大学,2021.
|
[12] |
Sarabahi S. Recent advances in topical wound care[J]. Indian J Plast Surg, 2012, 45(2): 379-387.
|
[13] |
张劲峰,郝建波,张劲鹏,等. 生物敷料的研究进展[J]. 中国修复重建外科杂志,2015, 29(2): 254-259.
|
[14] |
Dhivya S, Padma VV, Santhini E. Wound dressings–a review[J]. Biomedicine (Taipei), 2015, 5(4): 22.
|
[15] |
Field CK, Kerstein MD. Overview of wound healing in a moist environment[J]. Am J Surg, 1994, 167(1A): 2S-6S.
|
[16] |
Lam SJ, O′Brien-Simpson NM, Pantarat N, et al. Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers[J]. Nat Microbiol, 2016, 1(11): 16162.
|
[17] |
Chistiakov DA, Bobryshev YV, Nikiforov NG, et al. Macrophage phenotypic plasticity in atherosclerosis: The associated features and the peculiarities of the expression of inflammatory genes[J]. Int J Cardiol, 2015, 184: 436-445.
|
[18] |
高弘斐,张潜,陈龙,等. 间充质干细胞与巨噬细胞共培养体系的细胞因子表达模式研究[J]. 免疫学杂志,2017, 33(11): 930-936.
|
[19] |
吴燕,张定然,王新慧,等. 巨噬细胞极化及其对炎性疾病作用的研究进展[J]. 中国畜牧杂志,2021, 57(7): 22-26.
|
[20] |
Liu S, Zhang Q, Yu J, et al. Absorbable Thioether Grafted Hyaluronic Acid Nanofibrous Hydrogel for Synergistic Modulation of Inflammation Microenvironment to Accelerate Chronic Diabetic Wound Healing[J]. Adv Healthc Mater, 2020, 9(11): e2000198.
|
[21] |
Lu Y, Li H, Wang J, et al. Engineering Bacteria-Activated Multifunctionalized Hydrogel for Promoting Diabetic Wound Healing[J]. Adv Funct Mater, 2021, 31(48): 2105749.
|
[22] |
Aggarwal BB, Harikumar KB. Potential Therapeutic Effects of Curcumin, the Anti-inflammatory Agent, Against Neurodegenerative, Cardiovascular, Pulmonary, Metabolic, Autoimmune and Neoplastic Diseases[J]. Int J Biochem Cell Biol, 2009, 41(1): 40-59.
|
[23] |
Ghosh S, Banerjee S, Sil PC. The beneficial role of curcumin on inflammation, diabetes and neurodegenerative disease: A recent update[J]. Food Chem Toxicol, 2015, 83: 111-124.
|
[24] |
周芳,陈林,蔡佳,等. 姜黄素基于IL-8/MUC5ac信号通路对慢性阻塞性肺疾病大鼠的干预效果[J]. 中国老年学杂志,2021, 41(23): 5262-5266.
|
[25] |
Naldi A, Pivetta E, Coppo L, et al. Ultrasonography Monitoring of Optic Nerve Sheath Diameter and Retinal Vessels in Patients with Cerebral Hemorrhage[J]. J Neuroimaging, 2019, 29(3): 394-399.
|
[26] |
唐彪,周瑶瑶. 姜黄素通过TLR4-MAPK/NF-κB信号通路对巨噬细胞极化及炎症反应的影响[J]. 心电与循环,2019, 38(5): 389-394.
|
[27] |
周善宇. 姜黄素调控分型介导的巨噬细胞对创面愈合的影响[D]. 青岛:青岛大学,2017.
|
[28] |
Selvaraj S, Fathima NN. Fenugreek Incorporated Silk Fibroin Nanofibers - A Potential Antioxidant Scaffold for Enhanced Wound Healing[J]. ACS Appl Mater Interfaces, 2017, 9(7): 5916-5926.
|
[29] |
Wang L, Yang J, Ran B, et al. Small Molecular TGF-β1 Inhibitor Loaded Electrospun Fibrous Scaffolds for Preventing Hypertrophic Scars[J]. ACS Appl Mater Interfaces, 2017, 9(38): 32545-32553.
|
[30] |
Li S, Wang L, Zheng W, et al. Rapid fabrication of self-healing, conductive, and injectable gel as dressings for healing wounds in stretchable parts of the body[J]. Adv Funct Mater, 2020, 30(31): 2002370.
|
[31] |
Yang X, Yang J, Wang L, et al. Pharmaceutical Intermediate-Modified Gold Nanoparticles: Against Multidrug-Resistant Bacteria and Wound-Healing Application via an Electrospun Scaffold[J]. ACS Nano, 2017, 11(6): 5737-5745.
|
[32] |
Zhao X, Jia Y, Dong R, et al. Bimetallic Nanoparticles against Multi-Drug Resistant Bacteria[J]. Chem Commun (Camb), 2020, 56(74): 10918-10921.
|
[33] |
景峰,林本兰,崔升,等. 纳米抗菌复合材料的研究进展[J]. 现代化工,2016, 36(8): 29-32.
|
[34] |
Xue X, Wang Y, Yang H. Preparation and characterization of boron-doped titania nano-materials with antibacterial activity[J]. Appl Surf Sci, 2013, 264: 94-99.
|
[35] |
Niu M, Liu X, Dai J, et al. Molecular structure and properties of wool fiber surface-grafted with nano-antibacterial materials[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2012, 86: 289-293.
|
[36] |
Zheng Y, Liu W, Qin Z, et al. Mercaptopyrimidine-conjugated gold nanoclusters as nanoantibiotics for combating multidrug-resistant superbugs[J]. Bioconjug Chem, 2018, 29(9): 3094-3103.
|
[37] |
Zheng Y, Liu W, Chen Y, et al. Conjugating gold nanoclusters and antimicrobial peptides: From aggregation-induced emission to antibacterial synergy[J]. J Colloid Interface Sci, 2019, 546: 1-10.
|
[38] |
Wang S, Wang Y, Peng Y, et al. Exploring the antibacteria performance of multicolor Ag, Au, and Cu nanoclusters[J]. ACS Appl Mater Interfaces, 2019, 11(8): 8461-8469.
|
[39] |
Fan L, Sun J, Zhou M, et al. DRAMP: a comprehensive data repository of antimicrobial peptides[J]. Sci Rep, 2016, 6: 24482.
|
[40] |
Wang S, Yan C, Zhang X, et al. Antimicrobial peptide modification enhances the gene delivery and bactericidal efficiency of gold nanoparticles for accelerating diabetic wound healing[J]. Biomater Sci, 2018, 6(10): 2757-2772.
|
[41] |
袁香楠,谭绍洁,高晶,等. 靶向光热抗菌纳米材料及其在伤口愈合中的应用研究进展[J]. 生物医学工程学杂志,2022, 39(1): 207-216.
|
[42] |
Guan G, Win KY, Yao X, et al. Plasmonically modulated gold nanostructures for photothermal ablation of bacteria[J]. Adv Healthc Mater, 2021, 10(3): e2001158.
|
[43] |
Pan WY, Huang CC, Lin TT, et al. Synergistic antibacterial effects of localized heat and oxidative stress caused by hydroxyl radicals mediated by graphene/iron oxide-based nanocomposites[J]. Nanomedicine, 2016, 12(2): 431-438.
|
[44] |
Jannesari M, Akhavan O, Madaah Hosseini HR, et al. Graphene/CuO2 Nanoshuttles with Controllable Release of Oxygen Nanobubbles Promoting Interruption of Bacterial Respiration[J]. ACS Appl Mater Interfaces, 2020, 12(32): 35813-35825.
|
[45] |
Behfar A, Crespo-Diaz R, Terzic A, et al. Cell therapy for cardiac repair--lessons from clinical trials[J]. Nat Rev Cardiol, 2014, 11(4): 232-246.
|
[46] |
路青青,吕国忠,吕强. 具有促血管化能力的酸化丝蛋白海绵敷料的细胞相容性及该敷料对大鼠全层皮肤缺损创面愈合的影响[J]. 中华烧伤杂志,2021, 37(1): 25-33.
|
[47] |
毛珺,周应山,吴庭. 高吸型壳聚糖敷料的创面止血及促愈合效果[J]. 中国组织工程研究,2016, 20(16): 2391-2396.
|
[48] |
Teng L, Shao Z, Bai Q, et al. Biomimetic glycopolypeptide hydrogels with tunable adhesion and microporous structure for fast hemostasis and highly efficient wound healing[J]. Adv Funct Mater, 2021, 31(43): 2105628.
|
[49] |
Qin H, Wang J, Wang T, et al. Preparation and Characterization of Chitosan/β-Glycerophosphate Thermal-Sensitive Hydrogel Reinforced by Graphene Oxide[J]. Front Chem, 2018, 6: 565.
|
[50] |
Xie Y, Liao X, Zhang J, et al. Novel chitosan hydrogels reinforced by silver nanoparticles with ultrahigh mechanical and high antibacterial properties for accelerating wound healing[J]. Int J Biol Macromol, 2018, 119: 402-412.
|
[51] |
Chen Y, Zheng K, Niu L, et al. Highly mechanical properties nanocomposite hydrogels with biorenewable lignin nanoparticles[J]. Int J Biol Macromol, 2019, 128: 414-420.
|
[52] |
Richmond NA, Vivas AC, Kirsner RS. Topical and biologic therapies for diabetic foot ulcers[J]. Med Clin North Am, 2013, 97(5): 883-898.
|
[53] |
Madl CM, Katz LM, Heilshorn SC. Tuning bulk hydrogel degradation by simultaneous control of proteolytic cleavage kinetics and hydrogel network architecture[J]. ACS Macro Lett, 2018, 7(11): 1302-1307.
|
[54] |
Ninan N, Forget A, Shastri VP, et al. Antibacterial and anti-inflammatory pH-responsive tannic acid-carboxylated agarose composite hydrogels for wound healing[J]. ACS Appl Mater Interfaces, 2016, 8(42): 28511-28521.
|
[55] |
Leonhardt EE, Kang N, Hamad MA, et al. Absorbable hemostatic hydrogels comprising composites of sacrificial templates and honeycomb-like nanofibrous mats of chitosan[J]. Nat Commun, 2019, 10(1): 2307.
|
[56] |
Song X, Zhu C, Fan D, et al. A novel human-like collagen hydrogel scaffold with porous structure and sponge-like properties[J]. Polymers (Basel), 2017, 9(12): 638.
|