[1] |
Yue YC, Li MH, Wang HB, et al. The toxicological mechanisms and detoxification of depleted uranium exposure[J]. Environ Health Prev Med, 2018, 23(1): 18.
|
[2] |
Ma M, Wang R, Xu L, et al. Emerging health risks and underlying toxicological mechanisms of uranium contamination: lessons from the past two decades[J]. Environ Int, 2020, 145: 106107.
|
[3] |
Carugo O. Structural features of uranium-protein complexes[J]. J Inorg Biochem, 2018, 189: 1-6.
|
[4] |
Creff G, Zurita C, Jeanson A, et al. What do we know about actinides-proteins interactions?[J]. Radiochimica Acta, 2019, 107(9-11): 993-1009.
|
[5] |
Shaki F, Zamani E, Arjmand A, et al. A review on toxicodynamics of depleted uranium[J]. Iran J Pharm Res, 2019, 18 Suppl 1: 90-100.
|
[6] |
Asic A, Kurtovic-Kozaric A, Besic L, et al. Chemical toxicity and radioactivity of depleted uranium: the evidence from in vivo and in vitro studies[J]. Environ Res, 2017, 156: 665-673.
|
[7] |
Schilz JR, Dashner-Titus EJ, Simmons KA, et al. The immunotoxicity of natural and depleted uranium: from cells to people[J]. Toxicol Appl Pharmacol, 2022, 454: 116252.
|
[8] |
Cocco P. Cancer incidence among the NATO peacekeeping forces in Bosnia and Kosovo: a systematic review and metanalysis[J]. Med Lav, 2022, 113(1): e2022011.
|
[9] |
Kitahara K, Numako C, Terada Y, et al. Uranium XAFS analysis of kidney from rats exposed to uranium[J]. J Synchrotron Radiat, 2017, 24(Pt 2): 456-462.
|
[10] |
Cheng X, Chu J, Zhang L, et al. Intracellular and extracellular untargeted metabolomics reveal the effect of acute uranium exposure in HK-2 cells[J]. Toxicology, 2022, 473: 153196.
|
[11] |
Yu L, Li W, Chu J, et al. Uranium inhibits mammalian mitochondrial cytochrome c oxidase and ATP synthase[J]. Environ Pollut, 2021, 271: 116377.
|
[12] |
Wen Y, Vechetti IJ, Leng D, et al. Early transcriptomic signatures and biomarkers of renal damage due to prolonged exposure to embedded metal[J]. Cell Biol Toxicol, 2023, 39(6): 2861-2880.
|
[13] |
Liu S, Wang S, Zhao Y, et al. Depleted uranium causes renal mitochondrial dysfunction through the ETHE1/Nrf2 pathway[J]. Chem Biol Interact, 2023, 372: 110356.
|
[14] |
Hu Q, Zheng J, Xu XN, et al. Uranium induces kidney cells apoptosis via reactive oxygen species generation, endoplasmic reticulum stress and inhibition of PI3K/AKT/mTOR signaling in culture[J]. Environ Toxicol, 2022, 37(4): 899-909.
|
[15] |
Hu Q, Zhang R, Zheng J, et al. Hydrogen sulfide attenuates uranium-induced kidney cells pyroptosis via upregulation of PI3K/AKT/mTOR signaling[J]. J Biochem Mol Toxicol, 2023, 37(1): e23220.
|
[16] |
Yuan Y, Zheng J, Zhao T, et al. Uranium-induced rat kidney cell cytotoxicity is mediated by decreased endogenous hydrogen sulfide (H2S) generation involved in reduced Nrf2 levels[J]. Toxicol Res (Camb), 2016, 5(2): 660-673.
|
[17] |
Hao Y, Huang J, Ran Y, et al. Ethylmalonic encephalopathy 1 initiates overactive autophagy in depleted uranium-induced cytotoxicity in the human embryonic kidney 293 cells[J]. J Biochem Mol Toxicol, 2021, 35(3): e22669.
|
[18] |
Fattal E, Tsapis N, Phan G. Novel drug delivery systems for actinides (uranium and plutonium) decontamination agents[J]. Advanced Drug Delivery Reviews, 2015, 90: 40-54.
|
[19] |
Felipe-Sotelo M, Edgar M, Beattie T, et al. Effect of anthropogenic organic complexants on the solubility of Ni, Th, U(IV) and U(VI)[J]. J Hazard Mater, 2015, 300: 553-560.
|
[20] |
Durbin PW. Lauriston S. Taylor Lecture: the quest for therapeutic actinide chelators[J]. Health Phys, 2008, 95(5): 465-492.
|
[21] |
Abergel RJ, Durbin PW, Kullgren B, et al. Biomimetic actinide chelators: an update on the preclinical development of the orally active hydroxypyridonate decorporation agents 3, 4, 3-LI(1, 2-HOPO) and 5-LIO(Me-3, 2-HOPO)[J]. Health Phys, 2010, 99(3): 401-417.
|
[22] |
Bunin DI, Chang PY, Doppalapudi RS, et al. Dose-dependent efficacy and safety toxicology of hydroxypyridinonate actinide decorporation agents in rodents: towards a safe and effective human dosing regimen[J]. Radiat Res, 2013, 179(2): 171-182.
|
[23] |
Wang X, Dai X, Shi C, et al. A 3, 2-Hydroxypyridinone-based decorporation agent that removes uranium from bones in vivo[J]. Nat Commun, 2019, 10(1): 257.
|
[24] |
Fukuda S, Ikeda M, Nakamura M, et al. Efficacy of oral and intraperitoneal administration of CBMIDA for removing uranium in rats after parenteral injections of depleted uranium[J]. Radiat Prot Dosimetry, 2009, 133(1): 12-19.
|
[25] |
Bao Y, Wang D, Hu Y, et al. Efficacy of chelator CBMIDA-CaNa2 for the removal of uranium and protection against uranium-induced cell damage in human renal proximal tubular cells[J]. Health Phys, 2013, 105(1): 31-38.
|
[26] |
Bao Y, Wang D, Li Z, et al. Efficacy of a novel chelator BPCBG for removing uranium and protecting against uranium-induced renal cell damage in rats and HK-2 cells[J]. Toxicology and Applied Pharmacology, 2013, 269(1): 17-24.
|
[27] |
Henge-Napoli MH, Ansoborlo E, Chazel V, et al. Efficacy of ethane-1-hydroxy-1, 1-bisphosphonate (EHBP) for the decorporation of uranium after intramuscular contamination in rats[J]. Int J Radiat Biol, 1999, 75(11): 1473-1477.
|
[28] |
Bozal CB, Martinez AB, Cabrini RL, et al. Effect of ethane-1-hydroxy-1, 1-bisphosphonate (EHBP) on endochondral ossification lesions induced by a lethal oral dose of uranyl nitrate[J]. Arch Toxicol, 2005, 79(8): 475-481.
|
[29] |
Ubios AM, Braun EM, Cabrini RL. Effect of biphosphonates on abnormal mandibular growth of rats intoxicated with uranium[J]. Health Phys, 1998, 75(6): 610-613.
|
[30] |
Tymen H, Gerasimo P, Hoffschir D. Contamination and decontamination of rat and human skin with plutonium and uranium, studied with a Franz′s chamber[J]. Int J Radiat Biol, 2000, 76(10): 1417-1424.
|
[31] |
Houpert P, Chazel V, Paquet F, et al. Reduction of uranium transfer by local chelation in simulated wounds in rats[J]. Hum Exp Toxicol, 2001, 20(5): 237-241.
|
[32] |
Houpert P, Chazel V, Paquet F. A local approach to reduce industrial uranium wound contamination in rats[J]. Can J Physiol Pharmacol, 2004, 82(2): 73-78.
|
[33] |
Cebrian D, Tapia A, Real A, et al. Inositol hexaphosphate: a potential chelating agent for uranium[J]. Radiat Prot Dosimetry, 2007, 127(1-4): 477-479.
|
[34] |
Dinse C, Baglan N, Cossonnet C, et al. New purification protocol for actinide measurement in excreta based on calixarene chemistry[J]. Appl Radiat Isot, 2000, 53(1-2): 381-386.
|
[35] |
Phan G, Semili N, Bouvier-Capely C, et al. Calixarene cleansing formulation for uranium skin contamination[J]. Health Phys, 2013, 105(4): 382-389.
|
[36] |
Belhomme-Henry C, Phan G, Huang N, et al. Texturing formulations for uranium skin decontamination[J]. Pharm Dev Technol, 2014, 19(6): 692-701.
|
[37] |
Michailidou G, Koumentakou I, Liakos EV, et al. Adsorption of uranium, mercury, and rare earth elements from aqeous solutions onto magnetic chitosan adsorbents: a review[J]. Polymers (Basel), 2021, 13(18): 3137.
|
[38] |
Chauhan VP, Stylianopoulos T, Martin JD, et al. Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner[J]. Nat Nanotechnol, 2012, 7(6): 383-388.
|
[39] |
Li Z, Wang S, Dong Y, et al. Amidoxime functionalized chitosan for uranium sequestration in vivo[J]. Ecotoxicol Environ Saf, 2022, 239: 113636.
|
[40] |
Mousavi SZ, Nafisi S, Maibach HI. Fullerene nanoparticle in dermatological and cosmetic applications[J]. Nanomedicine, 2017, 13(3): 1071-1087.
|
[41] |
Liu XQ, Yang YY, Liao JL, et al. Efficient removal of uranium from mice by a novel compound of fullerence multi-macrocyclic polyamine derivatives[J]. Nuclear Science and Techniques, 2015, 26(4).
|
[42] |
Zheng T, Wan X, Zhang Q, et al. Catechol amide derivatized polyhydroxylated fullerene as potential chelating agents of radionuclides: synthesis, reactive oxygen species scavenging, and cytotoxic studies[J]. J Inorg Biochem, 2020, 203: 110921.
|
[43] |
Li J, Wang X, Zhao G, et al. Metal-organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions[J]. Chem Soc Rev, 2018, 47(7): 2322-2356.
|
[44] |
de Koning MC, Vieira Soares C, van Grol M, et al. Effective degradation of novichok nerve agents by the zirconium metal-organic framework MOF-808[J]. ACS Appl Mater Interfaces, 2022, 14(7): 9222-9230.
|
[45] |
Wang X, Chen L, Bai Z, et al. In vivo uranium sequestration using a nanoscale metal-organic framework[J]. Angew Chem Int Ed Engl, 2021, 60(3): 1646-1650.
|
[46] |
Chen L, Wang X, Chen M, et al. Self-aggregated nanoscale metal-organic framework for targeted pulmonary decorporation of Uranium[J]. Adv Healthc Mater, 2023: e2300510.
|
[47] |
Shi C, Wang X, Wan J, et al. 3, 2-Hydroxypyridinone-grafted chitosan oligosaccharide nanoparticles as efficient decorporation agents for simultaneous removal of uranium and radiation-induced reactive oxygen species in vivo[J]. Bioconjug Chem, 2018, 29(11): 3896-3905.
|
[48] |
Shi P, Wang X, Zhang H, et al. Boosting simultaneous uranium decorporation and reactive oxygen species scavenging efficiency by lacunary polyoxometalates[J]. ACS Appl Mater Interfaces, 2022, 14(49): 54423-54430.
|