[1] |
Ashouri S.An introduction to burns[J].Phys Med Rehabil Clin N Am, 2022, 33(4): 871-883.
|
[2] |
Bin Mohamed Ebrahim ME, Mohamed Rizvi Z, Hameed A, et al.Transplant outcomes from deceased donors dying with burns injury, a systematic review[J].Transplant Proc, 2022, 54(7):1730-1736.
|
[3] |
Liu Z, Li D, Yang J, et al.Transcriptome analysis of hepatic injury caused by delayed resuscitation following severe burns in rats[J].J Trauma Acute Care Surg, 2023, 95(4): 549-557.
|
[4] |
Liu Z, Li D, Liu X, et al.Elevated serum procalcitonin to predict severity and prognosis of extensive burns[J].J Invest Surg, 2022,35(7): 1510-1518.
|
[5] |
Bharath S, Agarwal P, Prabhakar T, et al.Correlation of thermal burn hepatic dysfunction with outcomes[J].Burns, 2024, 50(3):611-615.
|
[6] |
Tapking C, Kilian K, Hundeshagen G, et al.Hepatic functional pathophysiology and morphological damage following severe burns: a systematic review and meta-analysis[J].J Burn Care Res, 2022, 43(5): 1074-1080.
|
[7] |
Liu Z, Li D, Ma J, et al.A potential resuscitation route on battlefield: immediate intraperitoneal fluid administration post-burn shows satisfactory fluid absorption and anti-shock effects[J].Mil Med, 2023, 188(9-10): e3000-e3009.
|
[8] |
Liu S, Chen HZ, Xu ZD, et al.Sodium butyrate inhibits the production of HMGB1 and attenuates severe burn plus delayed resuscitation-induced intestine injury via the p38 signaling pathway[J].Burns, 2019, 45(3): 649-658.
|
[9] |
Shang J, Zhao F, Cao Y, et al.HMGB1 mediates lipopolysaccharide-induced macrophage autophagy and pyroptosis[J].BMC Mol Cell Biol, 2023, 24(1): 2.
|
[10] |
Zhao ZB, Marschner JA, Iwakura T, et al.Tubular epithelial cell HMGB1 promotes AKI-CKD transition by sensitizing cycling tubular cells to oxidative stress: a rationale for targeting HMGB1 during AKI recovery[J].J Am Soc Nephrol, 2023, 34(3): 394-411.
|
[11] |
Huang J, Wang Z, Zhang X, et al.Lipidomics study of sepsis-induced liver and lung injury under anti-HMGB1 intervention[J].J Proteome Res, 2023, 22(6): 1881-1895.
|
[12] |
Radzikowska-Büchner E, Łopuszyńska I, Flieger W, et al.An overview of recent developments in the management of burn injuries[J].Int J Mol Sci, 2023, 24(22): 16357.
|
[13] |
Huang R, Yao Y, Li L, et al.A 10-year mono-center study on patients with burns ≥70% TBSA: prediction model construction and multicenter validation-retrospective cohor[tJ].Int J Surg,2025, 111(1): 55-69.
|
[14] |
Gwyn-Jones A, Afolabi T, Bonney S, et al.Major burns in adults:a practice review[J].Emerg Med J, 2024, 41(10): 630-634.
|
[15] |
Kawashima K, Andreata F, Beccaria CG, et al.Priming and maintenance of adaptive immunity in the live[rJ].Annu Rev Immunol, 2024, 42(1): 375-399.
|
[16] |
Bharath S, Agarwal P, Prabhakar T, et al.Correlation of thermal burn hepatic dysfunction with outcomes[J].Burns, 2024, 50(3):611-615.
|
[17] |
Chen R, Kang R, Tang D.The mechanism of HMGB1 secretion and release[J].Exp Mol Med, 2022, 54(2): 91-102.
|
[18] |
Ding HS, Huang Y, Qu JF, et al.Panaxynol ameliorates cardiac ischemia/reperfusion injury by suppressing NLRP3-induced pyroptosis and apoptosis via HMGB1/TLR4/NF-κB axis[J].Int Immunopharmacol, 2023, 121: 110222.
|
[19] |
Du S, Zhang X, Jia Y, et al.Hepatocyte HSPA12A inhibits macrophage chemotaxis and activation to attenuate liver ischemia/reperfusion injury via suppressing glycolysis-mediated HMGB1 lactylation and secretion of hepatocytes[J].Theranostics, 2023,13(11): 3856-3871.
|
[20] |
Yang X, Chatterjee V, Zheng E, et al.Burn injury-induced extracellular vesicle production and characteristics[J].Shock,2022, 57(6): 228-242.
|
[21] |
Muraoka WT, Granados JC, Gomez BI, et al.Burn resuscitation strategy influences the gut microbiota-liver axis in swine[J].Sci Rep, 2020, 10(1): 15655.
|
[22] |
Alaaeldin R, Bakkar SM, Mohyeldin RH, et al.Azilsartan modulates HMGB1/NF-κB/p38/ERK1/2/JNK and apoptosis pathways during renal ischemia reperfusion injury[J].Cells,2023, 12(1): 185.
|
[23] |
Pantalone D, Bergamini C, Martellucci J, et al.The role of DAMPS in burns and hemorrhagic shock immune response:pathophysiology and clinical issues.Review[J].Int J Mol Sci,2021, 22(13): 7020.
|
[24] |
Xue Q, Kang R, Klionsky DJ, et al.Copper metabolism in cell death and autophagy[J].Autophagy, 2023, 19(8): 2175-2195.
|
[25] |
Starkova T, Polyanichko A, Artamonova T, et al.Structural characteristics of high-mobility group proteins HMGB1 and HMGB2 and their interaction with DNA[J].Int J Mol Sci,2023, 24(4): 3577.
|
[26] |
Yuan J, Ofengeim D.A guide to cell death pathways[J].Nat Rev Mol Cell Biol, 2024, 25(5): 379-395.
|
[27] |
Tang D, Kang R, Zeh HJ, et al.The multifunctional protein HMGB1: 50 years of discovery[J].Nat Rev Immunol, 2023,23(12): 824-841.
|
[28] |
Huang Y, Jiang W, Zhou R.DAMP sensing and sterile inflammation: intracellular, intercellular and inter-organ pathways[J].Nat Rev Immunol, 2024, 24(10): 703-719.
|
[29] |
Jin L, Zhu Z, Hong L, et al.ROS-responsive 18β-glycyrrhetic acid-conjugated polymeric nanoparticles mediate neuroprotection in ischemic stroke through HMGB1 inhibition and microglia polarization regulation[J].Bioact Mater, 2023, 19: 38-49.
|
[30] |
Deng C, Zhao L, Yang Z, et al.Targeting HMGB1 for the treatment of sepsis and sepsis-induced organ injury[J].Acta Pharmacol Sin, 2022, 43(3): 520-528.
|
[31] |
Koide H, Kiyokawa C, Okishima A, et al.Design of an anti-HMGB1 synthetic antibody for in vivo ischemic/reperfusion injury therapy[J].J Am Chem Soc, 2023, 145(42): 23143-23151.
|