[1] |
宗兆文,李楠. 马岛战争和二战中海战伤发生特点及其对我军海战伤救治的启示[J]. 第三军医大学学报,2017,39(24):2341-2344.
|
[2] |
Lillicrap D,Morrissey JH. Artificial intelligence,science,and learning[J]. J Thromb Haemost,2023,21(4):709.
|
[3] |
S G,B L. Deep convolutional generative adversarial network for improved cardiac image classification in heart disease diagnosis[J]. J Imaging Inform Med,2024,38(4):2146-2169.
|
[4] |
Li S,Zhang L,Cai Y,et al. Deep learning assists detection of esophageal cancer and precursor lesions in a prospective,randomized controlled study[J]. Sci Transl Med,2024,16(743):eadk5395.
|
[5] |
Giretzlehner M,Ganitzer I,Haller H. Technical and medical aspects of burn size assessment and documentation[J]. Medicina (Kaunas),2021,57(3):242.
|
[6] |
Chong HP,Quinn L,Jeeves A,et al. A comparison study of methods for estimation of a burn surface area: Lund and Browder,e-burn and Mersey Burns[J]. Burns,2020,46(2):483-489.
|
[7] |
Godwin Z,Tan J,Bockhold J,et al. Development and evaluation of a novel smart device-based application for burn assessment and management[J]. Burns,2015,41(4):754-760.
|
[8] |
Xu X,Bu Q,Xie J,et al. On-site burn severity assessment using smartphone-captured color burn wound images[J]. Comput Biol Med,2024,182:109171.
|
[9] |
Chang CW,Wang H,Lai F,et al. Comparison of 3D and 2D area measurement of acute burn wounds with LiDAR technique and deep learning model[J]. Front Artif Intell,2025,8:1510905.
|
[10] |
Malkoff N,Cannata B,Wang S,et al. FireSync EMS: a novel mobile application for burn surface area calculation[J]. J Burn Care Res,2025,46(1):101-106.
|
[11] |
Choi J,Patil A,Vendrow E,et al. Practical computer vision application to compute total body surface area burn: reappraising a fundamental burn injury formula in the Modern Era[J]. JAMA Surg,2022,157(2):129-135.
|
[12] |
Brekke RL,Almeland SK,Hufthammer KO,et al. Agreement of clinical assessment of burn size and burn depth between referring hospitals and burn centres: a systematic review[J]. Burns,2023,49(3):493-515.
|
[13] |
Li H,Bu Q,Shi X,et al. Non-invasive medical imaging technology for the diagnosis of burn depth[J]. Int Wound J,2024,21(1):e14681.
|
[14] |
Zuo KJ,Medina A,Tredget EE. Important developments in burn care[J]. Plast Reconstr Surg,2017,139(1):120e-138e.
|
[15] |
Nunez J,Mironov S,Wan B,et al. Novel multi-spectral short-wave infrared imaging for assessment of human burn wound depth[J]. Wound Repair Regen,2024,32(6):979-991.
|
[16] |
Thatcher JE,Yi F,Nussbaum AE,et al. Clinical investigation of a rapid non-invasive multispectral imaging device utilizing an artificial intelligence algorithm for improved burn assessment[J]. J Burn Care Res,2023,44(4):969-981.
|
[17] |
Lee S,Rahul,Ye H,et al. Real-time burn classification using ultrasound imaging[J]. Sci Rep,2020,10(1):5829.
|
[18] |
Lee S,Rahul,Lukan J,et al. A deep learning model for burn depth classification using ultrasound imaging[J]. J Mech Behav Biomed Mater,2022,125:104930.
|
[19] |
Jacobson MJ,Masry ME,Arrubla DC,et al. Autonomous multi-modality burn wound characterization using artificial intelligence[J]. Mil Med,2023,188(Suppl 6):674-681.
|
[20] |
Lu J,Deegan AJ,Cheng Y,et al. OCT-based angiography and surface topography in burn-damaged skin[J]. Lasers Surg Med,2021,53(6):849-860.
|
[21] |
Rangaraju LP,Kunapuli G,Every D,et al. Classification of burn injury using Raman spectroscopy and optical coherence tomography: an ex-vivo study on porcine skin[J]. Burns,2019,45(3):659-670.
|
[22] |
Ganapathy P,Tamminedi T,Qin Y,et al. Dual-imaging system for burn depth diagnosis[J]. Burns,2014,40(1):67-81.
|
[23] |
Wu J,Ma Q,Zhou X,et al. Segmentation and quantitative analysis of optical coherence tomography (OCT) images of laser burned skin based on deep learning[J]. Biomed Phys Eng Express,2024,10(4).
|
[24] |
Yıldız M,Sarpdağı Y,Okuyar M,et al. Segmentation and classification of skin burn images with artificial intelligence: development of a mobile application[J]. Burns,2024,50(4):966-979.
|
[25] |
Lee JJ,Abdolahnejad M,Morzycki A,et al. Comparing artificial intelligence guided image assessment to current methods of burn assessment[J]. J Burn Care Res,2025,46(1):6-13.
|
[26] |
Elsarta A,Fathalla H,Nasser M,et al. Integrating multi-source data for skin burn classification using deep learning[J]. Comput Biol Med,2025,195:110556.
|
[27] |
Chang CW,Ho CY,Lai F,et al. Application of multiple deep learning models for automatic burn wound assessment[J]. Burns,2023,49(5):1039-1051.
|
[28] |
Jiao C,Su K,Xie W,et al. Burn image segmentation based on Mask Regions with Convolutional Neural Network deep learning framework: more accurate and more convenient[J]. Burns Trauma,2019,7:6.
|
[29] |
Chen L,Liang J,Wang C,et al. Adversarial attacks and adversarial training for burn image segmentation based on deep learning[J]. Med Biol Eng Comput,2024,62(9):2717-2735.
|
[30] |
Holley AD,Reade MC,Lipman J,et al. There is no fire without smoke! pathophysiology and treatment of inhalational injury in burns: a narrative review[J]. Anaesth Intensive Care,2020,48(2):114-122.
|
[31] |
Dou Z,Zhang GA. Systematic review of the epidemiological characteristics of inhalation injury in burn patients in China[J]. Zhonghua Shao Shang Za Zhi,2021,37(7):654-660.
|
[32] |
Yang S,Huang C,Yen C,et al. Machine learning approach for predicting inhalation injury in patients with burns[J]. Burns,2023,49(7):1592-1601.
|
[33] |
Legrand M,Clark AT,Neyra JA,et al. Acute kidney injury in patients with burns[J]. Nat Rev Nephrol,2024,20(3):188-200.
|
[34] |
Rashidi HH,Makley A,Palmieri TL,et al. Enhancing military burn- and trauma-related acute kidney injury prediction through an automated machine learning platform and point-of-care testing[J]. Arch Pathol Lab Med,2021,145(3):320-326.
|
[35] |
Luo W,Xiong L,Wang J,et al. Development and performance evaluation of a clinical prediction model for sepsis risk in burn patients[J]. Medicine (Baltimore),2024,103(48):e40709.
|
[36] |
海医会烧创伤暨组织修复专委会,纪世召,胡晓燕,等. 舰船环境下烧伤早期救治专家共识(2024版)[J]. 海军医学杂志,2025,46(1):1-5.
|
[37] |
中华医学会烧伤外科学分会康复与护理学组,上海护理学会重症监护专委会,冯苹,等. 吸入性损伤人工气道护理的专家共识[J]. 海军医学杂志,2023,44(1):1-6.
|
[38] |
Li H,Zhen N,Lin S,et al. Deployable machine learning-based decision support system for tracheostomy in acute burn patients[J]. Burns Trauma,2025,13:tkaf010.
|
[39] |
张东海,柴家科. 烧伤补液Parkland公式的研究与应用现状[J]. 中华烧伤杂志,2015,31(3):235-237.
|
[40] |
Romanowski KS,Palmieri TL. Pediatric burn resuscitation: past,present,and future[J]. Burns Trauma,2017,5:26.
|
[41] |
Yamamura S,Kawada K,Takehira R,et al. Prediction of aminoglycoside response against methicillin-resistant Staphylococcus aureus infection in burn patients by artificial neural network modeling[J]. Biomed Pharmacother,2008,62(1):53-58.
|
[42] |
Rambhatla S,Huang S,Trinh L,et al. DL4Burn: burn surgical candidacy prediction using multimodal deep learning[J]. AMIA Annu Symp Proc,2021,2021:1039-1048.
|