[1] |
Hardy MA. The biology of scar formation[J]. Phys Ther, 1989, 69(1): 1014-1024.
|
[2] |
Niessen FB, Spauwen PH, Schalkwijk J, et al. On the nature of hypertrophic scars and keloids: a review[J]. Plast Reconstr Surg, 1999, 104(5): 1435-1458.
|
[3] |
Scott PG, Dodd CM, Ghahary A, et al. Fibroblasts from post-burn hypertrophic scar tissue synthesize less decorin than normal dermal fibroblasts[J]. Clin Sci (Lond), 1998, 94(5): 541-547.
|
[4] |
Arno AI, Amini-Nik S, Blit PH, et al. Effect of human Wharton’s jelly mesenchymal stem cell paracrine signaling on keloid fibroblasts[J]. Stem Cells Trans Med, 2014, 3(3): 299-307.
|
[5] |
Formigli L, Nistri S, Sassoli C, et al. cardiac stem cells and heart regeneration[J]. Ital J Anat Embryol, 2013, 118(2): 77-79.
|
[6] |
Salibian AA, Widgerow AD, Abrouk M, et al. Stem cells in plastic surgery: a review of current clinical and translational applications[J]. Arch Plast Surg, 2013, 40(6): 666-675.
|
[7] |
Cho KA, Lim GW, Joo SY, et al. Transplantation of bone marrow cells reduces CCl4-induced liver fibrosis in mice[J]. Liver Int, 2011, 31(7): 932-939.
|
[8] |
Zhou Y, Yuan J, Zhou B, et al. The therapeutic efficacy of human adipose tissue-derived mesenchymal stem cells on experimental autoimmune hearing loss in mice[J]. Immunology, 2011, 133(1): 133-140.
|
[9] |
Lam MT, Nauta A, Meyer NP, et al. Effective delivery of stem cells using an extracellular matrix patch results in increased cell survival and proliferation and reduced scarring in skin wound healing[J]. Tissue Eng Part A, 2013, 19(5/6): 738-747.
|
[10] |
Yun IS, Jeon YR, Lee WJ,et al. Effect of human adipose derived stem cells on scar formation and remodeling in a pig model: a pilot study[J]. Dermatol Surg, 2012, 38(10): 1678-1688.
|
[11] |
Li L, Zhang S, Zhang Y, et al. Paracrine action mediate the antifibrotic effect of transplanted mesenchymal stem cells in a rat model of global heart failure[J]. Mol Biol Rep, 2009, 36(4): 725-731.
|
[12] |
Tonnard P, VerPaele A, Peeters G, et al. Nanofat grafting: basic research and clinical applications[J]. Plast Reconstr Surg, 2013, 132(4): 1017-1026.
|
[13] |
Finnerty CC, Jeschke MG, Branski LK, et al. Hypertrophic scarring: the greatest unmet challenge after burn injury[J]. Lancet, 2016, 388(10052): 1427-1436.
|
[14] |
Yang DY, Li SR, Wu JL, et al. Establishment of a hypertrophic scar model by transplanting full-thickness human skin grafts onto the backs of nude mice[J]. Plast Reconstr Surg, 2007, 119(1): 104-109.
|
[15] |
Chen HC, Yen CI, Yang SY, et al. Comparison of Steroid and Botulinum Toxin Type A Monotherapy with CombinationTherapy for Treating Human Hypertrophic Scars in an Animal Model[J]. Plast Reconstr Surg, 2017, 140(1): 43e-49e.
|
[16] |
Li Y1, Zhang W, Gao J, et al. Adipose tissue-derived stem cells suppress hypertrophic scar fibrosis via the P38/MAPK signaling pathway[J]. Stem Cell Res Ther, 2016, 7(1): 102.
|
[17] |
Foubert P, Zafra D, Liu M et al. Autologous adipose-derived regenerative cell therapy modulates development of hypertrophic scarring in a red Duroc Porcine model[J]. Stem Cell Res Ther, 2017, 8(1): 261.
|
[18] |
Liu J, Ren J, Su L, et al. Human adipose tissue-derived stem cells inhibit the activity of keloid fibroblasts and fibrosis in a keloid model by paracrine signaling[J]. Burns, 2018, 44(2): 370-385.
|
[19] |
Uyulmaz S, Sanchez Macedo N, Rezaeian F, et al. Nanofat Grafting for Scar Treatment and Skin Quality Improvement[J]. Aesthet Surg J, 2018, 38(4): 421-428.
|
[20] |
陈俊男,赖林英,陈敏亮. 自体脂肪移植及其来源干细胞在瘢痕治疗中的研究进展[J]. 中华整形外科杂志,2018, 34(10): 874-878.
|
[21] |
Gentile P, Scioli MG, Bielli A, et al. Comparing different nanofat procedures on scars: role of the stromal vascular fraction and its clinical implications[J]. Regen Med, 2017, 12(8): 939-952.
|