[1] |
Inloes DS, Taylor DP, Cohen SN, et al. Ethanol Production by Saccharomyces Cerevisiae Immobilized in Hollow-Fiber Membrane Bioreactors[J]. Appl Environ Microbiol, 1983, 46(1):264-278.
|
[2] |
Araujo AR, Peixinho N, Pinho AC, et al. Quasi-static and dynamic properties of the intervertebral disc: experimental study and model parameter determination for the porcine lumbar motion segment[J]. Acta Bioeng Biomech, 2015, 17(4):59-66.
|
[3] |
Maher SA, Wang H, Koff MF, et al. Clinical platform for understanding the relationship between joint contact mechanics and articular cartilage changes after meniscal surgery[J]. J Orthop Res, 2017, 35(3):600-611.
|
[4] |
Halloran JP, Sibole S, van Donkelaar CC, et al. Multiscale mechanics of articular cartilage: potentials and challenges of coupling musculoskeletal, joint, and microscale computational models[J]. Ann Biomed Eng, 2012, 40(11):2456-2474.
|
[5] |
Nguyen AM, Levenston ME. Comparison of osmotic swelling influences on meniscal fibrocartilage and articular cartilage tissue mechanics in compression and shear[J]. J Orthop Res, 2012, 30(1):95-102.
|
[6] |
Gao Y, Liu S, Huang J, et al. The ECM-cell interaction of cartilage extracellular matrix on chondrocytes[J]. Biomed Res Int, 2014, 2014:648459.
|
[7] |
Ogawa H, Kozhemyakina E, Hung HH, et al. Mechanical motion promotes expression of Prg4 in articular cartilage via multiple CREB-dependent, fluid flow shear stress-induced signaling pathways[J]. Genes Dev, 2014, 28(2):127-139.
|
[8] |
Lui PP. Histopathological changes in tendinopathy--potential roles of BMPs[J]. Rheumatology (Oxford), 2013, 52(12):2116-2126.
|
[9] |
Lai WM, Mow VC. Drag-induced compression of articular cartilage during a permeation experiment[J]. Biorheology, 1980, 17(1/2):111-123.
|
[10] |
Cao Y, Stannus OP, Aitken D, et al. Cross-sectional and longitudinal associations between systemic, subchondral bone mineral density and knee cartilage thickness in older adults with or without radiographic osteoarthritis[J]. Ann Rheum Dis, 2014, 73(11):2003-2009.
|
[11] |
Buckwalter JA, Mankin HJ. Articular cartilage: tissue design and chondrocyte-matrix interactions[J]. Instr Course Lect, 1998, 47:477-486.
|
[12] |
Zhang L, Hu J, Athanasiou KA. The role of tissue engineering in articular cartilage repair and regeneration[J]. Crit Rev Biomed Eng, 2009, 37(1/2):1-57.
|
[13] |
Gemmiti CV, Guldberg RE. Fluid flow increases type II collagen deposition and tensile mechanical properties in bioreactor-grown tissue-engineered cartilage[J]. Tissue Eng, 2006, 12(3):469-479.
|
[14] |
Preiss-Bloom O, Mizrahi J, Elisseeff J, et al. Real-time monitoring of force response measured in mechanically stimulated tissue-engineered cartilage[J]. Artif Organs, 2009, 33(4):318-327.
|
[15] |
De Croos JN, Dhaliwal SS, Grynpas MD, et al. Cyclic compressive mechanical stimulation induces sequential catabolic and anabolic gene changes in chondrocytes resulting in increased extracellular matrix accumulation[J]. Matrix Biol, 2006, 25(6):323-331.
|
[16] |
Waldman SD, Couto DC, Grynpas MD, et al. A single application of cyclic loading can accelerate matrix deposition and enhance the properties of tissue-engineered cartilage[J]. Osteoarthritis Cartilage, 2006, 14(4):323-330.
|
[17] |
Smith RL, Lin J, Trindade MC, et al. Time-dependent effects of intermittent hydrostatic pressure on articular chondrocyte type II collagen and aggrecan mRNA expression[J]. J Rehabil Res Dev, 2000, 37(2):153-161.
|
[18] |
Grad S, Gogolewski S, Alini M, et al. Effects of simple and complex motion patterns on gene expression of chondrocytes seeded in 3D scaffolds[J]. Tissue Eng, 2006, 12(11):3171-3179.
|
[19] |
Han L, Grodzinsky AJ, Ortiz C. Nanomechanics of the Cartilage Extracellular Matrix[J]. Annu Rev Mater Res, 2011, 41:133-168.
|