[1] |
Shakil S, Khan AU. Infected foot ulcers in male and female diabetic patients: a clinico-bioinformative study [J]. Ann Clin Microbiol Antimicrob, 2010, 9: 2.
|
[2] |
Davis FM, Kimball A, Boniakowski A, et al. Dysfunctional Wound Healing in Diabetic Foot Ulcers: New Crossroads [J]. Curr Diab Rep, 2018, 18(1): 2.
|
[3] |
Pizzino G, Irrera N, Galfo F, et al. Effects of the antagomiRs 15b and 200b on the altered healing pattern of diabetic mice[J]. Br J Pharmacol, 2018, 175(4): 644-655.
|
[4] |
Brem H, Jacobs T, Vileikyte L, et al. Wound-healing protocols for diabetic foot and pressure ulcers[J]. Surg Technol Int, 2003, 11: 85-92.
|
[5] |
Suárez Y, Fernández-Hernando C, Yu J, et al. Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis[J]. Proc Natl Acad Sci U S A, 2008, 105(37): 14082-14087.
|
[6] |
Chan YC, Roy S, Khanna S, et al. Downregulation of endothelial microRNA-200b supports cutaneous wound angiogenesis by desilencing GATA binding protein 2 and vascular endothelial growth factor receptor 2[J]. Arterioscler Thromb Vasc Biol, 2012, 32(6): 1372-1382.
|
[7] |
Han X, Boyd PJ, Colgan S, et al. Transcriptional up- regulation of endothelial cell matrix metalloproteinase-2 in response to extracellular cues involves GATA-2[J]. J Biol Chem, 2003, 278(48): 47785-47791.
|
[8] |
Chan YC, Khanna S, Roy S, et al. miR-200b targets Ets-1 and is downregulated by hypoxia to induce angiogenic response of endothelial cells[J]. J Biol Chem, 2011, 286(3): 2047-2056.
|
[9] |
Daniel JM, Penzkofer D, Teske R, et al. Inhibition of miR-92a improves re-endothelialization and prevents neointima formation following vascular injury[J]. Cardiovasc Res, 2014, 103(4): 564-572.
|
[10] |
Bonauer A, Carmona G, Iwasaki M, et al. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice[J]. Science, 2009, 324(5935): 1710-1713.
|
[11] |
Kim S, Bell K, Mousa SA, et al. Regulation of angiogenesis in vivo by ligation of integrin alpha5beta1 with the central cell-binding domain of fibronectin[J]. Am J Pathol, 2000, 156(4): 1345-1362.
|
[12] |
Meng S, Cao JT, Zhang B, et al. Downregulation of microRNA-126 in endothelial progenitor cells from diabetes patients, impairs their functional properties, via target gene Spred-1[J]. J Mol Cell Cardiol, 2012, 53(1): 64-72.
|
[13] |
Wang S, Aurora AB, Johnson BA, et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis[J]. Dev Cell, 2008, 15(2): 261-271.
|
[14] |
Liu F, Lou YL, Wu J, et al. Upregulation of microRNA-210 regulates renal angiogenesis mediated by activation of VEGF signaling pathway under ischemia/perfusion injury in vivo and in vitro[J]. Kidney Blood Press Res, 2012, 35(3): 182-191.
|
[15] |
Xu J, Zgheib C, Hu J, et al. The role of microRNA-15b in the impaired angiogenesis in diabetic wounds[J]. Wound Repair Regen, 2014, 22(5): 671-677.
|
[16] |
Ying C, Sui-Xin L, Kang-Ling X, et al. MicroRNA-492 reverses high glucose- induced insulin resistance in HUVEC cells through targeting resistin[J]. Mol Cell Biochem, 2014, 391(1/2): 117-125.
|
[17] |
Tellechea A, Leal E, Veves A, et al. Inflammatory and angiogenic abnormalities in diabetic wound healing: Role of neuropeptides and therapeutic perspectives[J]. Open Circ Vasc J, 2010, 3: 43-55.
|
[18] |
Liang L, Stone RC, Stojadinovic O, et al. Integrative Analysis of miRNA and mRNA Paired Expression Profiling of Primary Fibroblast Derived from Diabetic Foot Ulcers Reveals Multiple Impaired Cellular Functions[J]. Wound Repair and Regeneration, 2016, 24(6): 943-953.
|
[19] |
Madhyastha R, Madhyastha H, Nakajima Y, et al. MicroRNA signature in diabetic wound healing: Promotive role of MIR-21 in fibroblast migration[J]. Int Wound J, 2012, 9(4): 355-361.
|
[20] |
Papagiannakopoulos T, Shapiro A, Kosik KS. MicroRNA-21 targets a network of key tumor-Suppressive pathway singlioblastoma cells[J]. Cancer Res, 2008, 68(19): 8164-8172.
|
[21] |
Kim YJ, Hwang SJ, Bae YC, et al. MiR-21 regulates adipogenic differentiation through the modulation of TGF-beta signaling in mesenchymal stem cells derived from human adipose tissue[J]. Stem Cells, 2009, 27(12): 3093-3102.
|
[22] |
Dangwal S, Stratmann B, Bang C, et al. Impairment of Wound Healing in Patients With Type 2 Diabetes Mellitus Influences Circulating MicroRNA Patterns via Inflammatory Cytokines[J]. Arterioscler Thromb Vasc Biol, 2015, 35(6): 1480-1488.
|
[23] |
Katsuno T, Umeda K, Matsui T, et al. Deficiency of Zonula Occludens-1 Causes Embryonic Lethal Phenotype Associated with Defected Yolk Sac Angiogenesis and Apoptosis of Embryonic Cells[J]. Mol Biol Cell, 2008, 19(6): 2465-2475.
|
[24] |
Wang Y, Baskerville S, Shenoy A, et al. Embryonic stem cell-specific microRNAs regulate the G1-S transition and promote rapid proliferation[J]. Nat Genet. 2008, 40(12): 1478-1483.
|
[25] |
Bae YU, SON Y, Kim CH, et al. Embryonic stem cell-derived mmu-miR-291a-3p inhibits cellular senescence in human dermal fibroblasts through the TGF-βreceptor 2 pathway[J]. J Gerontol A Biol Sci Med Sci, 2018.
|
[26] |
Acosta JC, Banito A, Wuestefeld T, et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence[J]. Nat Cell Biol, 2013, 15(8): 978-990.
|
[27] |
Pottier N, Maurin T, Chevalier B, et al. Identification of Keratinocyte Growth Factor as a Target of microRNA-155 in Lung Fibroblasts: Implication in Epithelial-Mesenchymal Interactions[J]. PLos One, 2009, 4(8): e6718.
|
[28] |
Demidova-Rice TN, Hamblin MR, Herman IM. Acute and impaired wound healing: pathophysiology and current methods for drug delivery, part 2: role of growth factors in normal and pathological wound healing: therapeutic potential and methods of delivery[J]. Adv Skin Wound Care, 2012, 25(8): 349-370.
|
[29] |
Viticchiè G, Lena AM, Cianfarani F, et al. MicroRNA-203 contributes to skin re-epithelialization[J]. Cell Death Dis, 2012, 3: e435.
|
[30] |
Lena AM, Shalom-Feuerstein R, Rivetti di Val Cervo P, et al. miR-203 represses ′stemness′ by repressing DeltaNp63[J]. Cell Death Differ, 2008, 15(7): 1187-1195.
|
[31] |
Hildebrand J, Rütze M, Walz N, et al. A comprehensive analysis of microRNA expression during human keratinocyte differentiation in vitro and in vivo[J]. J Invest Dermatol, 2011, 131(1): 20-29.
|
[32] |
Yang X, Wang J, Guo SL, et al. Mir-21 promotes keratinocyte migration and re-epithelialization during wound healing[J]. Int J Biol Sci, 2011, 7(5): 685-690.
|
[33] |
Wang T, Feng Y, Sun H, et al. miR-21 regulates skin wound healing by targeting multiple aspects of the healing process[J]. Am J Pathol, 2012, 181(6): 1911-1920.
|
[34] |
Zeng J, Xiong Y, Li G, et al. MiR-21 is overexpressed in response to high glucose and protects endothelial cells from apoptosis[J]. Exp Clin Endocrinol Diabetes, 2013, 121(7): 425-430.
|
[35] |
Pastar I, Khan AA, Stojadinovic O, et al. Induction of specific microRNAs inhibits cutaneous wound healing[J]. J Biol Chem, 2012, 287(35): 29324-29335.
|
[36] |
Jobin PG, Butler GS, Overall CM. New intracellular activities of matrix metalloproteinases shine in the moonlight[J]. Biochim Biophys Acta Mol Cell Res, 2017, 1864(11 Pt A): 2043-2055.
|
[37] |
Kunkemoeller B, Kyriakides TR. Redox Signaling in Diabetic Wound Healing Regulates Extracellular Matrix Deposition[J]. Antioxid Redox Signal, 2017, 27(12): 823-838.
|
[38] |
Ling L, Ren M, Yang C, et al. Role of site-specific DNA demethylation in TNFα-induced MMP9 expression in keratinocytes[J]. J Mol Endocrinol, 2013, 50(3): 279-290.
|
[39] |
Muller M, Trocme C, Lardy B, et al. Matrix metalloproteinases and diabetic foot ulcers: the ratio of MMP-1 to TIMP-1 is a predictor of wound healing[J]. Diabet Med, 2008, 25(4): 419-426.
|
[40] |
Wang W, Yang C, Wang XY, et al. MicroRNA-129 and -335 Promote Diabetic Wound Healing by Inhibiting Sp1-Mediated MMP-9 Expression[J]. Diabetes, 2018, 679(8): 1627-1638.
|
[41] |
Li D, Wang A, Liu X, et al. MicroRNA-132 enhances transition from inflammation to proliferation during wound healing[J]. J Clin Invest, 2015, 125(8): 3008-3026.
|
[42] |
Li D, Landén NX. MicroRNAs in skin wound healing[J]. Eur J Dermatol, 2017, 27(S1): 12-14.
|
[43] |
Lucas T, Schäfer F, Müller P, et al. Light-inducible antimiR-92a as a therapeutic strategy to promote skin repair in healing-impaired diabetic mice[J]. Nat Commun, 2017, 8: 15162.
|
[44] |
Li X, Li D, Wang A, et al. MicroRNA-132 with Therapeutic Potential in Chronic Wounds[J]. J Invest Dermatol, 2017, 137(12): 2630-2638.
|
[45] |
Gallant-Behm CL, Piper J, Dickinson BA, et al. A synthetic microRNA-92a inhibitor (MRG-110) accelerates angiogenesis and wound healing in diabetic and nondiabetic wounds[J]. Wound Repair Regen, 2018, 26(4): 311-323.
|
[46] |
Cai S, Cheng X, Pan X, et al. Emerging role of exosomes in liver physiology and pathology[J]. Hepatol Res, 2016, 47(2): 194-203.
|
[47] |
Luo SS, Ishibashi O, Ishikawa G, et al. Human villous trophoblasts express and secrete placenta-specific microRNAs into maternal circulation via exosomes[J]. Biol Reprod, 2009, 81(4): 717-729.
|
[48] |
Bui TM, Mascarenhas LA, Sumagin R. Extracellular vesicles regulate immune responses and cellular function in intestinal inflammation and repair[J]. Tissue Barriers, 2018, 6(2): e1431038.
|
[49] |
Bakhtyar N, Jeschke MG, Herer E, et al. Exosomes from acellular Wharton′s jelly of the human umbilical cord promotes skin wound healing[J]. Stem Cell Res Ther, 2018, 9(1): 193.
|
[50] |
Gallo A, Tandon M, Alevizos I, et al. The majority of microRNAs detectable in serum and saliva is concentrated in exosomes[J]. PLoS One, 2012, 7(3): e30679.
|
[51] |
Fahs F, Bi X L, Yu F S, et al. Small RNAs Play Big Roles: MicroRNAs in Diabetic Wound Healing[J]. Curr Mol Med. 2016.
|