[1] |
朱兆明,柴家科,贾晓明. 皮肤储存基础与应用[M]. 北京:人民军医出版社,2002: 183.
|
[2] |
青春,史济湘. 烧伤创面覆盖物[J]. 生物医学工程学杂志,1995, 12(1): 82-86.
|
[3] |
Heimbach D, Luterman A, Burke J, et al. Artificial dermis for major burns. A multi-center randomized clinical trial[J]. Ann Surg, 1988, 208(3): 313-320.
|
[4] |
Conor Hale. FDA clears first xenotransplantation trial of skin cells derived from genetically engineered[EB/OL]. (2018-12-12)[2021-03-18].
URL
|
[5] |
Goverman J. Mass General performs first application of genetically modified, live-cell, pig skin to a human wound[EB/OL]. (2019-10-11) [2021-03-18].
URL
|
[6] |
步宏,王华,魏启欧,等. 中国近交系猪到人异种移植靶抗原研究[J]. 中国修复重建外科杂志,2000, 14(2): 115-118.
|
[7] |
Galili U, Mandrell RE, Hamadeh RM, et al. Interaction Between Human Natural Anti-Alpha-Galactosyl Immunoglobulin G and Bacteria of the Human Flora[J]. Infect Immun, 1988, 56(7): 1730-1737.
|
[8] |
Yamamoto T, Iwase H, King TW, et al. Skin xenotransplantation: Historical review and clinical potential[J]. Burns, 2018, 44(7): 1738-1749.
|
[9] |
Lai L, Kolber-Simonds D, Park KW, et al. Production of α-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning[J]. Science, 2002, 295(5557): 1089-1092.
|
[10] |
Weiner J, Yamada K, Ishikawa Y, et al. Prolonged survival of GalT-KO swine skin on baboons[J]. Xenotransplantation, 2010, 17(2): 147-152.
|
[11] |
Leto Barone AA, Mastroianni M, Farkash EA, et al. Genetically modified porcine split-thickness skin grafts as an alternative to allograft for provision of temporary wound coverage: preliminary characterization[J]. Burns, 2015, 41(3): 565-574.
|
[12] |
Leonard DA, Mallard C, Albritton A, et al. Skin grafts from genetically modified a-1,3-galactosyltransferase knockout miniature swine: A functional equivalent to allografts[J]. Burns, 2017, 43(8): 1717-1724.
|
[13] |
Holzer PW, Chang E, Wicks J, et al. Immunological response in cynomolgus macaques to porcine α-1,3 galactosyltransferase knockout viable skin xenotransplants—A pre-clinical study[J]. Xenotransplantation, 2020, 27(6): e12632.
|
[14] |
Azimzadeh AM, Kelishadi SS, Ezzelarab MB, et al. Early graft failure of GalTKO pig organs in baboons is reduced by expression of a human complement pathway-regulatory protein[J]. Xenotransplantation, 2015, 22(4): 310-316.
|
[15] |
Ezzelarab MB, Ayares D, Cooper DK. Transgenic expression of human CD46: does it reduce the primate T-cell response to pig endothelial cells?[J]. Xenotransplantation, 2015, 22(6): 487-489.
|
[16] |
Mohiuddin MM, Corcoran PC, Singh AK, et al. B-cell depletion extends the survival of GTKO.hCD46Tg pig heart xenografts in baboons for up to 8 months[J]. Am J Transplant, 2012, 12(3): 763-771.
|
[17] |
Mohiuddin MM, Singh AK, Corcoran PC, et al. Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO.hCD46.hTBM pig-to-primate cardiac xenograft[J]. Nat Commun, 2016, 7: 11138.
|
[18] |
Singh AK, Chan JL, DiChiacchio L, et al. Cardiac xenografts show reduced survival in the absence of transgenic human thrombomodulin expression in donor pigs[J]. Xenotransplantation, 2019, 26(2): e12465.
|
[19] |
Ezzelarab M, Cooper DK. Reducing Gal expression on the pig organ - a retrospective review[J]. Xenotransplantation, 2005, 12(4): 278-285.
|
[20] |
Fujita T, Miyagawa S, Ezoe K, et al. Skin graft of double transgenic pigs of N-acetylglucosaminyltransferase III (GnT-III) and DAF (CD55) genes survived in cynomolgus monkey for 31 days[J]. Transpl Immunol, 2004, 13(4): 259-264.
|
[21] |
Gao B, Long C, Lee W, et al. Anti-Neu5Gc and anti-non-Neu5Gc antibodies in healthy humans[J]. PLoS One, 2017, 12(7): e0180768.
|
[22] |
Tector AJ, Mosser M, Tector M, et al. The Possible Role of Anti-Neu5Gc as an Obstacle in Xenotransplantation[J]. Front Immunol, 2020, 11: 622.
|
[23] |
Scobie L, Padler-Karavani V, Le Bas-Bernardet S, et al. Long-term IgG response to porcine Neu5Gc antigens without transmission of PERV in burn patients treated with porcine skin xenografts[J]. J Immunol, 2013, 191: 2907-2915.
|
[24] |
Cooper DK. Modifying the sugar icing on the transplantation cake[J]. Glycobiology, 2016, 26(6): 571-581.
|
[25] |
Wang RG, Ruan M, Zhang RJ, et al. Antigenicity of tissues and organs from GGTA1/CMAH/β4GalNT2 triple gene knockout pigs[J]. J Biomed Res, 2018, 33(4): 235-243.
|
[26] |
Cooper DKC, Ezzelarab M, Iwase H, et al. Perspectives on the Optimal Genetically Engineered Pig in 2018 for Initial Clinical Trials of Kidney or Heart Xenotransplantation[J]. Transplantation, 2018, 102(12): 1974-1982.
|
[27] |
Yamamoto T, Iwase H, Patel D, et al. Old World Monkeys are less than ideal transplantation models for testing pig organs lacking three carbohydrate antigens (Triple-Knockout)[J]. Sci Rep, 2020, 10(1): 9771.
|
[28] |
Ge L, Xiong F, Zhang W, et al. In vitro Ad5F35-mediated CTLA4-Ig gene transfer prolongs pig skin xenotransplant survival[J]. Transplant Proc, 2010, 42(9): 3763-3766.
|
[29] |
马兵,易绍萱,刘月明,等. CTLA4Ig基因转染猪皮治疗中小面积浅Ⅱ度烧伤创面的随机对照试验[J/CD]. 中华损伤与修复杂志(电子版), 2008, 3(3): 305-309.
|
[30] |
刘漪沦,马兵,刘月明,等. 基因转染猪皮在大面积深度烧伤患者微粒皮移植中的临床应用[J]. 四川医学,2009, 30(5): 623-624.
|
[31] |
Wang Y, Yang HQ, Jiang W, et al. Transgenic expression of human cytoxic T-lymphocyte associated antigen4-immunoglobulin (hCTLA4Ig) by porcine skin for xenogeneic skin grafting[J]. Transgenic Res, 2015, 24(2): 199-211.
|