[1] |
Reinke JM, Sorg H. Wound repair and regeneration[J]. Eur Surg Res, 2012, 49(1): 35-43.
|
[2] |
Scharf GM, Kilian K, Cordero J, et al. Inactivation of Sox9 in fibroblasts reduces cardiac fibrosis and inflammation[J]. JCI Insight, 2019, 5(15): e126721.
|
[3] |
Coentro JQ, Pugliese E, Hanley G, et al. Current and upcoming therapies to modulate skin scarring and fibrosis[J]. Adv Drug Deliv Rev, 2019, 146: 37-59.
|
[4] |
Xie J, Yao B, Han Y, et al. Skin appendage-derived stem cells: cell biology and potential for wound repair[J]. Burns Trauma, 2016, 4: 38.
|
[5] |
Berman B, Maderal A, Raphael B. Keloids and Hypertrophic Scars: Pathophysiology, Classification, and Treatment[J]. Dermatol Surg, 2017, 43 Suppl 1: S3-S18.
|
[6] |
Andrews JP, Marttala J, Macarak E, et al. Keloids: The paradigm of skin fibrosis - Pathomechanisms and treatment[J]. Matrix Biol, 2016, 51: 37-46.
|
[7] |
Sorrell JM, Caplan AI. Fibroblasts-a diverse population at the center of it all[J]. Int Rev Cell Mol Biol, 2009, 276: 161-214.
|
[8] |
Lian N, Li T. Growth factor pathways in hypertrophic scars: Molecular pathogenesis and therapeutic implications[J]. Biomed Pharmacother, 2016, 84: 42-50.
|
[9] |
Schulz JN, Plomann M, Sengle G, et al. New developments on skin fibrosis - Essential signals emanating from the extracellular matrix for the control of myofibroblasts[J]. Matrix Biol, 2018, 68-69: 522-532.
|
[10] |
Mora-Navarro C, Badileanu A, Gracioso AM, et al. Porcine Vocal Fold Lamina Propria-Derived Biomaterials Modulate TGF-beta1-Mediated Fibroblast Activation in Vitro[J]. ACS Biomater Sci Eng, 2020, 6(3): 1690-1703.
|
[11] |
Janson DG, Saintigny G, van Adrichem A, et al. Different gene expression patterns in human papillary and reticular fibroblasts[J]. J Invest Dermatol, 2012, 132(11): 2565-2572.
|
[12] |
Hinz B, Gabbiani G. Fibrosis: recent advances in myofibroblast biology and new therapeutic perspectives[J]. F1000 Biol Rep, 2010, 2: 78.
|
[13] |
Tan J, Wu J. Current progress in understanding the molecular pathogenesis of burn scar contracture[J]. Burns Trauma, 2017, 5: 14.
|
[14] |
Rodrigues M, Kosaric N, Bonham CA, et al. Wound Healing: A Cellular Perspective[J]. Physiol Rev, 2019, 99(1): 665-706.
|
[15] |
Desmoulière A, Redard M, Darby I, et al. Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar[J]. Am J Pathol, 1995, 146(1): 56-66.
|
[16] |
Khansa I, Harrison B, Janis JE. Evidence-Based Scar Management: How to Improve Results with Technique and Technology[J]. Plast Reconstr Surg, 2016, 138(3 Suppl): 165S-178S.
|
[17] |
Zhu Z, Ding J, Tredget EE. The molecular basis of hypertrophic scars[J]. Burns Trauma, 2016, 4: 2.
|
[18] |
Le M, Naridze R, Morrison J, et al. Transforming growth factor Beta 3 is required for excisional wound repair in vivo[J]. PLoS One, 2012, 7(10): e48040.
|
[19] |
Buscemi L, Ramonet D, Klingberg F, et al. The single-molecule mechanics of the latent TGF-beta1 complex[J]. Curr Biol, 2011, 21(24): 2046-2054.
|
[20] |
Hinz B. The role of myofibroblasts in wound healing[J]. Curr Res Transl Med, 2016, 64(4): 171-177.
|
[21] |
Chang Z, Kishimoto Y, Hasan A, et al. TGF-beta3 modulates the inflammatory environment and reduces scar formation following vocal fold mucosal injury in rats[J]. Dis Model Mech, 2014, 7(1): 83-91.
|
[22] |
Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs[J]. Cardiovasc Res, 2006, 69(3): 562-573.
|
[23] |
Arpino V, Brock M, Gill SE. The role of TIMPs in regulation of extracellular matrix proteolysis[J]. Matrix Biol, 2015, 44-46: 247-254.
|
[24] |
Rousseau B, Ge PJ, Ohno T, et al. Extracellular matrix gene expression after vocal fold injury in a rabbit model[J]. Ann Otol Rhinol Laryngol, 2008, 117(8): 598-603.
|
[25] |
Meng X, Zhang K, Kong J, et al. Deletion of resistin-like molecule-beta attenuates angiotensin II-induced abdominal aortic aneurysm[J]. Oncotarget, 2017, 8(61): 104171-104181.
|
[26] |
Kopcewicz MM, Kur-Piotrowska A, Bukowska J, et al. Foxn1 and Mmp-9 expression in intact skin and during excisional wound repair in young, adult, and old C57Bl/6 mice[J]. Wound Repair Regen, 2017, 25(2): 248-259.
|
[27] |
Guimaraes-Stabili MR, de Medeiros MC, Rossi D, et al. Silencing matrix metalloproteinase-13 (Mmp-13) reduces inflammatory bone resorption associated with LPS-induced periodontal disease in vivo[J]. Clin Oral Investig, 2021, 25(5): 3161-3172.
|
[28] |
Wang J, Zhang N, Peng M, et al. p85alpha Inactivates MMP-2 and Suppresses Bladder Cancer Invasion by Inhibiting MMP-14 Transcription and TIMP-2 Degradation[J]. Neoplasia, 2019, 21(9): 908-920.
|
[29] |
Wang XQ, Song F, Liu YK. Hypertrophic scar regression is linked to the occurrence of endothelial dysfunction[J]. PLoS One, 2017, 12(5): e176681.
|
[30] |
Karsdal MA, Nielsen SH, Leeming DJ, et al. The good and the bad collagens of fibrosis - Their role in signaling and organ function[J]. Adv Drug Deliv Rev, 2017, 121: 43-56.
|
[31] |
Demaria M, Ohtani N, Youssef SA, et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA[J]. Dev Cell, 2014, 31(6): 722-733.
|
[32] |
De Donatis A, Comito G, Buricchi F, et al. Proliferation versus migration in platelet-derived growth factor signaling: the key role of endocytosis[J]. J Biol Chem, 2008, 283(29): 19948-19956.
|
[33] |
Wågsäter D, Zhu C, Björck HM, et al. Effects of PDGF-C and PDGF-D on monocyte migration and MMP-2 and MMP-9 expression[J]. Atherosclerosis, 2009, 202(2): 415-423.
|
[34] |
Klinkhammer BM, Floege J, Boor P. PDGF in organ fibrosis[J]. Mol Aspects Med, 2018, 62: 44-62.
|
[35] |
Ikawa T, Ichimura Y, Miyagawa T, et al. The Contribution of LIGHT to the Development of Systemic Sclerosis by Modulating IL-6 and T Helper Type 1 Chemokine Expression in Dermal Fibroblasts[J]. J Invest Dermatol, 2022, 142(6): 1541-1551.e3.
|
[36] |
Bosurgi L, Cao YG, Cabeza-Cabrerizo M, et al. Macrophage function in tissue repair and remodeling requires IL-4 or IL-13 with apoptotic cells[J]. Science, 2017, 356(6342): 1072-1076.
|
[37] |
Braune J, Weyer U, Hobusch C, et al. IL-6 Regulates M2 Polarization and Local Proliferation of Adipose Tissue Macrophages in Obesity[J]. J Immunol, 2017, 198(7): 2927-2934.
|
[38] |
Dufour AM, Alvarez M, Russo B, et al. Interleukin-6 and Type-I Collagen Production by Systemic Sclerosis Fibroblasts Are Differentially Regulated by Interleukin-17A in the Presence of Transforming Growth Factor-Beta 1[J]. Front Immunol, 2018, 9: 1865.
|
[39] |
Nicoletti G, Saler M, Villani L, et al. Platelet Rich Plasma Enhancement of Skin Regeneration in an ex-vivo Human Experimental Model[J]. Front Bioeng Biotechnol, 2019, 7: 2.
|
[40] |
Goodarzi P, Falahzadeh K, Nematizadeh M, et al. Tissue Engineered Skin Substitutes[J]. Adv Exp Med Biol, 2018, 1107: 143-188.
|
[41] |
Chun Q, ZhiYong W, Fei S, et al. Dynamic biological changes in fibroblasts during hypertrophic scar formation and regression[J]. Int Wound J, 2016, 13(2): 257-262.
|
[42] |
Wilgus TA, Ferreira AM, Oberyszyn TM, et al. Regulation of scar formation by vascular endothelial growth factor[J]. Lab Invest, 2008, 88(6): 579-590.
|
[43] |
Hirabayashi M, Asano Y, Yamashita T, et al. Possible pro-inflammatory role of heparin-binding epidermal growth factor-like growth factor in the active phase of systemic sclerosis[J]. J Dermatol, 2018, 45(2): 182-188.
|
[44] |
Park CH, Chung JH. Epidermal growth factor-induced matrix metalloproteinase-1 expression is negatively regulated by p38 MAPK in human skin fibroblasts[J]. J Dermatol Sci, 2011, 64(2): 134-141.
|
[45] |
Hong JP, Park SW. The combined effect of recombinant human epidermal growth factor and erythropoietin on full-thickness wound healing in diabetic rat model[J]. Int Wound J, 2014, 11(4): 373-378.
|
[46] |
Richard JL, Parer-Richard C, Daures JP, et al. Effect of topical basic fibroblast growth factor on the healing of chronic diabetic neuropathic ulcer of the foot. A pilot, randomized, double-blind, placebo-controlled study[J]. Diabetes Care, 1995, 18(1): 64-69.
|
[47] |
Thew J, Burrage P, Medlicott N, et al. Modelling optimal delivery of bFGF to chronic wounds using ODEs[J]. J Theor Biol, 2019, 465: 109-116.
|
[48] |
Abdelhakim M, Lin X, Ogawa R. The Japanese Experience with Basic Fibroblast Growth Factor in Cutaneous Wound Management and Scar Prevention: A Systematic Review of Clinical and Biological Aspects[J]. Dermatol Ther (Heidelb), 2020, 10(4): 569-587.
|
[49] |
Kawai Y, Kishimoto Y, Sogami T, et al. Characterization of aged rat vocal fold fibroblasts[J]. Laryngoscope, 2019, 129(3): E94-E101.
|
[50] |
Akasaka Y, Ono I, Kamiya T, et al. The mechanisms underlying fibroblast apoptosis regulated by growth factors during wound healing[J]. J Pathol, 2010, 221(3): 285-299.
|
[51] |
Hirano S, Sugiyama Y, Kaneko M, et al. Intracordal Injection of Basic Fibroblast Growth Factor in 100 Cases of Vocal Fold Atrophy and Scar[J]. Laryngoscope, 2021, 131(9): 2059-2064.
|
[52] |
Mori T, Yoshida M, Hazekawa M, et al. Antimicrobial Activities of LL-37 Fragment Mutant-Poly (Lactic-Co-Glycolic) Acid Conjugate against Staphylococcus aureus, Escherichia coli, and Candida albicans[J]. Int J Mol Sci, 2021, 22(10): 5097.
|
[53] |
Zhao W, Han Q, Lin H, et al. Improved neovascularization and wound repair by targeting human basic fibroblast growth factor (bFGF) to fibrin[J]. J Mol Med (Berl), 2008, 86(10): 1127-1138.
|
[54] |
Xu F, Liu C, Zhou D, et al. TGF-beta/SMAD Pathway and Its Regulation in Hepatic Fibrosis[J]. J Histochem Cytochem, 2016, 64(3): 157-167.
|
[55] |
Xu J, Shao T, Song M, et al. MIR22HG acts as a tumor suppressor via TGFbeta/SMAD signaling and facilitates immunotherapy in colorectal cancer[J]. Mol Cancer, 2020, 19(1): 51.
|
[56] |
Yu DK, Zhang CX, Zhao SS, et al. The anti-fibrotic effects of epigallocatechin-3-gallate in bile duct-ligated cholestatic rats and human hepatic stellate LX-2 cells are mediated by the PI3K/Akt/Smad pathway[J]. Acta Pharmacol Sin, 2015, 36(4): 473-482.
|
[57] |
Ackers I, Malgor R. Interrelationship of canonical and non-canonical Wnt signalling pathways in chronic metabolic diseases[J]. Diab Vasc Dis Res, 2018, 15(1): 3-13.
|
[58] |
Gajos-Michniewicz A, Czyz M. WNT Signaling in Melanoma[J]. Int J Mol Sci, 2020, 21(14): 4852.
|
[59] |
Xiao L, Zhou D, Tan RJ, et al. Sustained Activation of Wnt/beta-Catenin Signaling Drives AKI to CKD Progression[J]. J Am Soc Nephrol, 2016, 27(6): 1727-1740.
|
[60] |
Chen H, Yang T, Wang MC, et al. Novel RAS inhibitor 25-O-methylalisol F attenuates epithelial-to-mesenchymal transition and tubulo-interstitial fibrosis by selectively inhibiting TGF-beta-mediated Smad3 phosphorylation[J]. Phytomedicine, 2018, 42: 207-218.
|
[61] |
Edeling M, Ragi G, Huang S, et al. Developmental signalling pathways in renal fibrosis: the roles of Notch, Wnt and Hedgehog[J]. Nat Rev Nephrol, 2016, 12(7): 426-439.
|
[62] |
Meng XM, Nikolic-Paterson DJ, Lan HY. TGF-beta: the master regulator of fibrosis[J]. Nat Rev Nephrol, 2016, 12(6): 325-338.
|
[63] |
Vallée A, Guillevin R, Vallée JN. Vasculogenesis and angiogenesis initiation under normoxic conditions through Wnt/beta-catenin pathway in gliomas[J]. Rev Neurosci, 2018, 29(1): 71-91.
|