[1] |
Gurtner GC,Werner S,Barrandon Y, et al. Wound repair and regeneration[J]. Nature, 2008, 453(7193): 314-321.
|
[2] |
Eming SA,Martin P,Tomic-Canic M. Wound repair and regeneration: mechanisms, signaling, and translation[J]. Sci Transl Med, 2014, 6(265): 265sr266.
|
[3] |
Battegay EJ. Angiogenesis: mechanistic insights, neovascular diseases, and therapeutic prospects[J]. J Mol Med (Berl), 1995, 73(7): 333-346.
|
[4] |
Benjamin LE. The controls of microvascular survival[J]. Cancer Metastasis Rev, 2000, 19(1/2): 75-81.
|
[5] |
Dimmeler S,Zeiher, AM. Endothelial cell apoptosis in angiogenesis and vessel regression[J]. Circ Res, 2000, 87(6): 434-439.
|
[6] |
Nissen NN,Polverini PJ,Koch AE, et al. Vascular endothelial growth factor mediates angiogenic activity during the proliferative phase of wound healing[J]. Am J Pathol, 1998, 152(6): 1445-1452.
|
[7] |
Cassell P. Review of article: Coadministration of adipose-derived stem cells and control-released basic fibroblast growth factor facilitates angiogenesis in a murine ischemic hind limb model by Horikoshi-Ishihara, Tobita, Tajima, et al. Journal of Vascular Surgery 12/2016;pp1825-1834[J]. J Vasc Nurs, 2017, 35(1): 36-37.
|
[8] |
Uutela M,Wirzenius M,Paavonen K, et al. PDGF-D induces macrophage recruitment, increased interstitial pressure, and blood vessel maturation during angiogenesis[J]. Blood, 2004, 104(10): 3198-3204.
|
[9] |
Pardali E,Goumans MJ,ten Dijke P. Signaling by members of the TGF-β family in vascular morphogenesis and disease[J]. Trends Cell Biol, 2010, 20(9): 556-567.
|
[10] |
Michalczyk ER,Chen L,Fine D, et al. Pigment Epithelium-Derived Factor (PEDF) as a Regulator of Wound Angiogenesis[J]. Sci Rep, 2018, 8(1): 11142.
|
[11] |
Wietecha MS,Chen L,Ranzer MJ, et al. Sprouty2 downregulates angiogenesis during mouse skin wound healing[J]. Am J Physiol Heart Circ Physiol, 2011, 300(2): H459-467.
|
[12] |
Maclauchlan S,Skokos EA,Agah A, et al. Enhanced angiogenesis and reduced contraction in thrombospondin-2-null wounds is associated with increased levels of matrix metalloproteinases-2 and -9, and soluble VEGF[J]. J Histochem Cytochem, 2009, 57(4): 301-313.
|
[13] |
Thomas H,Cowin AJ,Mills SJ. The Importance of Pericytes in Healing: Wounds and other Pathologies[J]. Int J Mol Sci, 2017, 18(6): pii: E1129.
|
[14] |
Dulauroy S,Di Carlo SE,Langa F, et al. Lineage tracing and genetic ablation of ADAM12(+) perivascular cells identify a major source of profibrotic cells during acute tissue injury[J]. Nat Med, 2012, 18(8): 1262-1270.
|
[15] |
Ogawa R. High blood pressure (hypertension) may influence the results of clinical trials for scar and keloid treatments[J]. Plast Reconstr Surg, 2013, 132(6): 1074e-1075e.
|
[16] |
付小兵, 程飚. 病理性瘢痕治疗现状与展望[J]. 中华整形外科杂志,2006, 22(2): 146-149.
|
[17] |
Zhang L,Qin H,Wu Z, et al. Identification of the potential targets for keloid and hypertrophic scar prevention[J]. J Dermatolog Treat, 2018, 29(6): 600-605.
|
[18] |
Tonnesen MG,Feng X,Clark RA. Angiogenesis in wound healing[J]. J Investig Dermatol Symp Proc, 2000, 5(1): 40-46.
|
[19] |
Eming SA,Brachvogel B,Odorisio T, et al. Regulation of angiogenesis: Wound healing as a model[J]. Prog Histochem Cytochem, 2008, 42(3): 115-170.
|
[20] |
Jang YC,Arumugam S,Gibran NS, et al. Role of (v) integrins and angiogenesis during wound repair[J]. Wound Repair Regen, 2010, 7(5): 375-380.
|
[21] |
Wilgus TA,Ferreira AM,Oberyszyn TM, et al. Regulation of scar formation by vascular endothelial growth factor[J]. Lab Invest, 2008, 88(6): 579-590.
|
[22] |
沈锐, 利天增, 祁少海,等. 靶向血管治疗增生性瘢痕的实验研究[J]. 中华整形外科杂志,2003, 19(4): 254-257.
|
[23] |
Fujiwara M,Muragaki Y,Ooshima A. Upregulation of transforming growth factor-β1 and vascular endothelial growth factor in cultured keloid fibroblasts: relevance to angiogenic activity[J]. Arch Dermatol Res, 2005, 297(4): 161-169.
|
[24] |
Fujiwara M,Muragaki Y,Ooshima A. Keloid-derived fibroblasts show increased secretion of factors involved in collagen turnover and depend on matrix metalloproteinase for migration[J]. Br J Dermatol, 2015, 153(2): 295-300.
|
[25] |
Christopher G. Engeland. Stress, Aging, and Wound Healing[M]. New York: Springer, 2013.
|
[26] |
Szpaderska AM,Zuckerman, JD,DiPietro LA. Differential Injury Responses in Oral Mucosal and Cutaneous Wounds[J]. J Dent Res, 2003, 82(8): 621-626.
|
[27] |
姜笃银, 付小兵, 陈伟,等. 血管生成因子及其受体过表达与瘢痕疙瘩侵袭性生长[J]. 中华整形外科杂志,2004, 20(2): 128-131.
|
[28] |
李高峰, 罗成群, 刘浔阳,等. 瘢痕内微循环的变化[J]. 中华医学美学美容杂志,2005, 11(4): 223-226.
|
[29] |
van der Veer WM,Niessen FB,Ferreira JA, et al. Time course of the angiogenic response during normotrophic and hypertrophic scar formation in humans[J]. Wound Repair Regen, 2011, 19(3): 292-301.
|
[30] |
Elpek GÖ. Angiogenesis and liver fibrosis[J]. World J Hepatol, 2015, 7(3): 377-391.
|
[31] |
Farkas L,Gauldie J,Voelkel NF, et al. Pulmonary hypertension and idiopathic pulmonary fibrosis: a tale of angiogenesis, apoptosis, and growth factors[J]. Am J Respir Cell Mol Biol, 2011, 45(1): 1-15.
|
[32] |
沈锐, 利天增, 祁少海,等. 血管内皮细胞生长因子在烧伤后肉芽组织和增生性瘢痕中的表达[J]. 中国康复理论与实践,2002, 8(1): 1-2.
|
[33] |
Ren HT,Hu H,Li Y, et al. Endostatin inhibits hypertrophic scarring in a rabbit ear model[J]. J Zhejiang Univ Sci B, 2013, 14(3): 224-230.
|
[34] |
Wietecha MS,Król MJ,Michalczyk ER, et al. Pigment epithelium-derived factor as a multifunctional regulator of wound healing[J]. Am J Physiol Heart Circ Physiol, 2015, 309(5): H812-826.
|
[35] |
Nagy JA,Benjamin L,Zeng H, et al. Vascular permeability, vascular hyperpermeability and angiogenesis[J]. Angiogenesis, 2008, 11(2): 109-119.
|
[36] |
Lingen MW. Role of leukocytes and endothelial cells in the development of angiogenesis in inflammation and wound healing[J]. Arch Pathol Lab Med, 2001, 125(1): 67-71.
|
[37] |
Jackson CJ,Xue M,Thompson P. Activated protein C prevents inflammation yet stimulates angiogenesis to promote cutaneous wound healing[J]. Wound Repair Regen, 2005, 13(3): 284-294.
|
[38] |
Mathai SK,Gulati M,Peng X, et al. Circulating monocytes from systemic sclerosis patients with interstitial lung disease show an enhanced profibrotic phenotype[J]. Lab Invest, 2010, 90(6): 812-823.
|
[39] |
Laplante P,Sirois I,Raymond MA, et al. Caspase-3-mediated secretion of connective tissue growth factor by apoptotic endothelial cells promotes fibrosis[J]. Cell Death Differ, 2010, 17(2): 291-303.
|
[40] |
Koh TJ,DiPietro LA. Inflammation and wound healing: the role of the macrophage[J]. Expert Rev Mol Med, 2011, 13: e23.
|
[41] |
Wynn TA. Cellular and molecular mechanisms of fibrosis[J]. J Pathol, 2010, 214(2): 199-210.
|
[42] |
Murray LA,Chen Q,Kramer MS, et al. TGF-beta driven lung fibrosis is macrophage dependent and blocked by Serum amyloid P[J]. Int J Biochem Cell Biol, 2011, 43(1): 154-162.
|
[43] |
Perez-Aso M,Chiriboga L,Cronstein BN. Pharmacological blockade of adenosine A2A receptors diminishes scarring[J]. FASEB J, 2012, 26(10): 4254-4263.
|
[44] |
Katebi M,Fernandez P,Chan ES, et al. Adenosine A2A receptor blockade or deletion diminishes fibrocyte accumulation in the skin in a murine model of scleroderma, Bleomycin-induced Fibrosis[J]. Inflammation, 2008, 31(5): 299-303.
|
[45] |
Hunt TK,Hopf H,Hussain Z. Physiology of wound healing[J]. Adv Skin Wound Care, 2000, 13(2 Suppl): 6-11.
|
[46] |
Wong VW,Rustad KC,Akaishi S. et al. Focal adhesion kinase links mechanical force to skin fibrosis via inflammatory signaling[J]. Nat Med, 2011, 18(1): 148-152.
|
[47] |
Wong VW,Paterno J,Sorkin M, et al. Mechanical force prolongs acute inflammation via T-cell-dependent pathways during scar formation[J]. FASEB J, 2011, 25(12): 4498-4510.
|
[48] |
Li P,Li-Tsang CWP,Deng X, et al. The recovery of post-burn hypertrophic scar in a monitored pressure therapy intervention programme and the timing of intervention[J]. Burns, 2018, 44(6): 1451-1467.
|
[49] |
Park TH,Park JH,Tirgan MH, et al. Reply: Outcomes of surgical excision with pressure therapy using magnets and identification of risk factors for recurrent keloids[J]. Plast Reconstr Surg, 2013, 132(4): 667e-668e.
|
[50] |
van Leeuwen MC,van der Wal MB,Bulstra AE, et al. Intralesional cryotherapy for treatment of keloid scars: a prospective study[J]. Plast Reconstr Surg, 2015, 135(2): 580-589.
|
[51] |
Har-Shai Y,Amar M,Sabo E. Intralesional cryotherapy for enhancing the involution of hypertrophic scars and keloids[J]. Plast Reconstr Surg, 2003, 111(6): 1841-1852.
|
[52] |
Sabry HH,Abdel Rahman SH,Hussein MS, et al. The Efficacy of Combining Fractional Carbon Dioxide Laser With Verapamil Hydrochloride or 5-Fluorouracil in the Treatment of Hypertrophic Scars and Keloids: A Clinical and Immunohistochemical Study[J]. Dermatol Surg, 2019, 45(4): 536-546.
|
[53] |
Zuccaro J,Ziolkowski N,Fish J. A Systematic Review of the Effectiveness of Laser Therapy for Hypertrophic Burn Scars[J]. Clin Plast Surg, 2017, 44(4): 767-779.
|
[54] |
Diao JS,Xia WS,Guo SZ. Bevacizumab: A potential agent for prevention and treatment of hypertrophic scar[J]. Burns, 2010, 36(7): 1136-1137.
|