[1] |
蒋琪霞,朱冬梅. 皮肤和伤口循证护理规范[M]. 南京:东南大学出版社,2021:56-67.
|
[2] |
熊元,曹发奇,刘梦非,等. 2023创伤骨科慢性难愈性创面诊疗指南:治疗概要[J]. 临床外科杂志,2024,32(1):49-52.
|
[3] |
World Health Organization. Chronic wound management: global perspective and challenges [R]. Geneva: WHO Press,2020.
|
[4] |
刘安康,杨巧红,王延峰,等. 慢性伤口评估的最佳证据总结[J]. 护士进修杂志,2023,38(18):1694-1699.
|
[5] |
张霄. 《“十四五”全民健康信息化规划》印发[J]. 中医药管理杂志,2022,30(21):136.
|
[6] |
张霄. 三部门联合印发《卫生健康行业人工智能应用场景参考指引》[J]. 中医药管理杂志,2024,32(22):35.
|
[7] |
于营,赵芝鹤,杨婷婷. 基于全卷积神经网络的医学图像语义分割研究进展综述[J]. 电脑与电信,2023(7):16-22.
|
[8] |
Ge X,Du L,Zheng S,et al. Development and application of an intelligent pressure injury assessment system using AI image recognition[J]. Technol Health Care,2025,33(3):1358-1366.
|
[9] |
Lei C,Jiang Y,Xu K,et al. Convolutional neural network models for visual classification of pressure ulcer stages: cross-sectional study[J]. JMIR Med Inform,2025,13:e62774.
|
[10] |
王珍妮,须月萍,夏开建,等. 基于YOLO神经网络构建压力性损伤自动检测和分期的人工智能模型[J]. 中国全科医学,2024,27(36):4582-4590.
|
[11] |
张小丽,张元智,宋志红,等. 基于卷积神经网络评估伤口愈合模型的建立[J]. 内蒙古医科大学学报,2024,46(S1):44-46.
|
[12] |
Dabas M,Kapp S,Gefen A. Utilizing image processing techniques for wound management and evaluation in clinical practice: establishing the feasibility of implementing artificial intelligence in routine wound care[J]. Adv Skin Wound Care,2025,38(1):31-39.
|
[13] |
Hüsers J,Moelleken M,Richter ML,et al. An image based object recognition system for wound detection and classification of diabetic foot and venous leg ulcers[J]. Stud Health Technol Inform,2022,294:63-67.
|
[14] |
彭英,郑海兰,祁明霞,等. 随机森林和决策树模型在糖尿病足患者预后不良风险预测中的效能比较[J]. 中国临床研究,2025,38(4):524-528.
|
[15] |
Deng J,Shi G,Ye Z,et al. Unveiling and swift diagnosing chronic wound healing with artificial intelligence assistance[J]. Chin Chem Lett,2025,36(3):110496.
|
[16] |
Curti N,Merli Y,Zengarini C,et al. Automated prediction of photographic wound assessment tool in chronic wound images[J]. J Med Syst,2024,48(1):14.
|
[17] |
郑洪伶,蒋璐,苏琼. 国际伤口感染研究所2022版《临床实践中的感染伤口——最佳实践原则》中伤口感染风险评估、识别和诊断内容解读[J]. 护理研究,2023,37(15):2665-2672.
|
[18] |
Viswanathan V,Govindan S,Selvaraj B,et al. A clinical study to evaluate autofluorescence imaging of diabetic foot ulcers using a novel artificial intelligence enabled noninvasive device[J]. Int J Low Extrem Wounds,2024,23(1):169-176.
|
[19] |
Howell RS,Liu HH,Khan AA,et al. Development of a method for clinical evaluation of artificial intelligence-based digital wound assessment tools[J]. JAMA Netw Open,2021,4(5):e217234.
|
[20] |
刘震东. 基于激光诱导石墨烯的多功能伤口监测传感器[D]. 浙江工业大学,2020:1-17.
|
[21] |
Kalasin S,Sangnuang P,Surareungchai W. Intelligent wearable sensors interconnected with advanced wound dressing bandages for contactless chronic skin monitoring: artificial intelligence for predicting tissue regeneration[J]. Anal Chem,2022,94(18):6842-6852.
|
[22] |
Yang F,Chen H,Shan Y,et al. Preventing postoperative moderate- and high-risk pressure injuries with artificial intelligence-powered smart decompression mattress on in middle-aged and elderly patients: a retrospective cohort analysis[J]. Br J Hosp Med,2024,85(8):1-13.
|
[23] |
Tusar MH,Fayyazbakhsh F,Zendehdel N,et al. AI-powered image-based assessment of pressure injuries using you only look once (YOLO) version 8 models[J]. Adv Wound Care,2025.
|
[24] |
鲁雪梅,王艺. 优玛国际伤口治疗师教程——伤口护理学[M]. 北京:中华医学电子音像出版社,2025:163-178.
|
[25] |
Alderden J,Johnny J,Brooks KR,et al. Explainable artificial intelligence for early prediction of pressure injury risk[J]. Am J Crit Care,2024,33(5):373-381.
|
[26] |
李世玫,刘静. 人工智能压力性损伤图片分析系统对压力性损伤预后的影响分析[J]. 全科护理,2024,22(19):3631-3634.
|
[27] |
陈健,须月萍,徐晓丹,等. 基于卷积神经网络的深度学习方法对压力性损伤分期的研究[J]. 护士进修杂志,2024,39(17):1800-1806.
|
[28] |
谢华晓,王泠,贺影,等. 慢性伤口管理卫生经济学评价的研究现状及思考[J]. 中国护理管理,2022,22(1):138-142.
|
[29] |
冉倩,徐蔚蔚,孙航,等. 伤口愈合协会2023年《糖尿病足溃疡治疗指南(第3版)》解读[J]. 护理研究,2025,39(7):1062-1067.
|
[30] |
Mert M,Vahabi A,Daştan AE,et al. Artificial intelligence's suggestions for level of amputation in diabetic foot ulcers are highly correlated with those of clinicians,only with exception of hindfoot amputations[J]. Int Wound J,2024,21(10):e70055.
|
[31] |
Oei CW,Chan YM,Zhang X,et al. Risk prediction of diabetic foot amputation using machine learning and explainable artificial intelligence[J]. J Diabetes Sci Technol,2025,19(4):1008-1022.
|
[32] |
Sun Y,Ge L,Ang YG,et al. Cost-effectiveness and clinical outcomes of artificial intelligence-enhanced screening for diabetic foot ulcers: a simulation study[J]. Ann Acad Med Singapore,2024,53(10):638-640.
|
[33] |
Ardelean A,Balta DF,Neamtu C,et al. Personalized and predictive strategies for diabetic foot ulcer prevention and therapeutic management: potential improvements through introducing artificial intelligence and wearable technology[J]. Med Pharm Rep,2024,97(4):419-428.
|
[34] |
Ward AC,Dubey P,Basnett P,et al. Toward a closed loop,integrated biocompatible biopolymer wound dressing patch for detection and prevention of chronic wound infections[J]. Front Bioeng Biotechnol,2020,8:1039.
|
[35] |
Habib MB,Batool G,Shah NA,et al. Biofilm-mediated infections; novel therapeutic approaches and harnessing artificial intelligence for early detection and treatment of biofilm-associated infections[J]. Microb Pathog,2025,203:107497.
|
[36] |
Alkhalefah S,AlTuraiki I,Altwaijry N. Advancing diabetic foot ulcer care: AI and generative AI approaches for classification,prediction,segmentation,and detection[J]. Healthcare,2025,13(6):648.
|
[37] |
Lo ZJ,Mak MHW,Liang S,et al. Development of an explainable artificial intelligence model for Asian vascular wound images[J]. Int Wound J,2024,21(4):e14565.
|
[38] |
Kim J,Kim M,Youn H,et al. Method for enhancing AI accuracy in pressure injury detection using real and synthetic datasets[J]. Appl Sci,2024,14(20):9396.
|
[39] |
赵楠,周秋红,胡建中,等. 一种糖尿病足溃疡智能测量模型的构建与验证[J]. 中南大学学报(医学版),2021,46(10):1138-1146.
|
[40] |
Salih S,Murat K,Emmanuel W,et al. The enlightening role of explainable artificial intelligence in chronic wound classification[J]. Electronics,2021,10(12):1406.
|
[41] |
Jiménez DR,Lozano LC,Carrión SG,et al. Artificial intelligence methods for diagnostic and decision-making assistance in chronic wounds: a systematic review[J]. J Med Syst,2025,49(1):29.
|
[42] |
Rippon MG,Fleming L,Chen T,et al. Artificial intelligence in wound care: diagnosis,assessment and treatment of hard-to-heal wounds: a narrative review[J]. J Wound Care,2024,33(4):229-242.
|
[43] |
姚琼,王觅也,师庆科,等. 深度学习在现代医疗领域中的应用[J]. 计算机系统应用,2022,31(4):33-46.
|
[44] |
Moldwin A,Demner-Fushman D,Goodwin TR. Empirical findings on the role of structured data,unstructured data,and their combination for automatic clinical phenotyping[J]. AMIA Jt Summits Transl Sci Proc,2021,2021:445-454.
|
[45] |
Weggen A,Hochlenert D,Mertens M,et al. Enhancing outpatient wound care: applying AI to optimize treatment of patients with diabetic foot syndrome-the EPWUF-KI project[J]. Stud Health Technol Inform,2024,316:1031-1032.
|
[46] |
刘安康. 基于深度学习的智能化压力性损伤创面评估模型研发[D]. 暨南大学,2023:56-57.
|
[47] |
Pinnekamp H,Rentschler V,Majjouti K,et al. Controlled pilot intervention study on the effects of an AI-based application to support incontinence-associated dermatitis and pressure injury assessment,nursing care and documentation: study protocol[J]. Res Nurs Health,2025,48(4):419-428.
|