切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2019, Vol. 14 ›› Issue (04) : 303 -306. doi: 10.3877/cma.j.issn.1673-9450.2019.04.013

所属专题: 文献

综述

血管生成的调节在瘢痕形成过程中的作用
朱君佑1, 祁少海1,()   
  1. 1. 510080 广州,中山大学附属第一医院烧伤外科
  • 收稿日期:2019-06-07 出版日期:2019-08-01
  • 通信作者: 祁少海

Role of angiogenesis regulation in the process of scar formation

Junyou Zhu1, Shaohai Qi1,()   

  1. 1. Department of Burns Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
  • Received:2019-06-07 Published:2019-08-01
  • Corresponding author: Shaohai Qi
  • About author:
    Corresponding author: Qi Shaohai, Email:
引用本文:

朱君佑, 祁少海. 血管生成的调节在瘢痕形成过程中的作用[J]. 中华损伤与修复杂志(电子版), 2019, 14(04): 303-306.

Junyou Zhu, Shaohai Qi. Role of angiogenesis regulation in the process of scar formation[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2019, 14(04): 303-306.

血管生成的调节主要发生在创面愈合过程中的后2个阶段,即增生期、重塑期。正常情况下,创面形成大量排列紊乱的毛细血管床,但随着创面逐渐愈合,大部分血管凋亡、退化,并重新排列,最终恢复正常皮肤毛细血管结构与密度。该过程受一系列复杂分子及信号通路的调控,主要包括促血管生成和抗血管生成2方面因子的刺激,但关于创面血管功能和毛细血管增生如何影响瘢痕形成的关键问题仍未得到解答。本综述总结国内外现有研究成果,全面阐述创面血管生成的调控机制,深入探讨血管生成和瘢痕形成之间的关系以及血管异常生长影响瘢痕形成的潜在机制,介绍针对血管形成的相关治疗方案,为减少创面瘢痕形成提供新的思路。

The regulation of angiogenesis mainly occurs in the last two stages of wound healing, namely the proliferation stage and the remodeling stage. Under normal circumstances, the wound forms a large number of disordered capillary beds, but with the gradual healing of the wound, most of the blood vessels apoptosis, degradation, and rearrangement, and finally returns to the normal structure and density. This process has been regulated by a series of complex molecules and signal pathways, including angiogenesis and anti-angiogenic factors. However, the questions about how wound vascular function and capillary hyperplasia affect scar formation have not been answered. This review summarizes the existing research results at home and abroad, comprehensively demonstrates the regulatory mechanism of wound angiogenesis, and discusses the relationship between angiogenesis and scar formation, as well as the potential mechanism of abnormal angiogensis affecting scar formation. This paper also introduces the related treatment schemes for angiogenesis, which provides a new idea for reducing scar formation.

[1]
Gurtner GC,Werner S,Barrandon Y, et al. Wound repair and regeneration[J]. Nature, 2008, 453(7193): 314-321.
[2]
Eming SA,Martin P,Tomic-Canic M. Wound repair and regeneration: mechanisms, signaling, and translation[J]. Sci Transl Med, 2014, 6(265): 265sr266.
[3]
Battegay EJ. Angiogenesis: mechanistic insights, neovascular diseases, and therapeutic prospects[J]. J Mol Med (Berl), 1995, 73(7): 333-346.
[4]
Benjamin LE. The controls of microvascular survival[J]. Cancer Metastasis Rev, 2000, 19(1/2): 75-81.
[5]
Dimmeler S,Zeiher, AM. Endothelial cell apoptosis in angiogenesis and vessel regression[J]. Circ Res, 2000, 87(6): 434-439.
[6]
Nissen NN,Polverini PJ,Koch AE, et al. Vascular endothelial growth factor mediates angiogenic activity during the proliferative phase of wound healing[J]. Am J Pathol, 1998, 152(6): 1445-1452.
[7]
Cassell P. Review of article: Coadministration of adipose-derived stem cells and control-released basic fibroblast growth factor facilitates angiogenesis in a murine ischemic hind limb model by Horikoshi-Ishihara, Tobita, Tajima, et al. Journal of Vascular Surgery 12/2016;pp1825-1834[J]. J Vasc Nurs, 2017, 35(1): 36-37.
[8]
Uutela M,Wirzenius M,Paavonen K, et al. PDGF-D induces macrophage recruitment, increased interstitial pressure, and blood vessel maturation during angiogenesis[J]. Blood, 2004, 104(10): 3198-3204.
[9]
Pardali E,Goumans MJ,ten Dijke P. Signaling by members of the TGF-β family in vascular morphogenesis and disease[J]. Trends Cell Biol, 2010, 20(9): 556-567.
[10]
Michalczyk ER,Chen L,Fine D, et al. Pigment Epithelium-Derived Factor (PEDF) as a Regulator of Wound Angiogenesis[J]. Sci Rep, 2018, 8(1): 11142.
[11]
Wietecha MS,Chen L,Ranzer MJ, et al. Sprouty2 downregulates angiogenesis during mouse skin wound healing[J]. Am J Physiol Heart Circ Physiol, 2011, 300(2): H459-467.
[12]
Maclauchlan S,Skokos EA,Agah A, et al. Enhanced angiogenesis and reduced contraction in thrombospondin-2-null wounds is associated with increased levels of matrix metalloproteinases-2 and -9, and soluble VEGF[J]. J Histochem Cytochem, 2009, 57(4): 301-313.
[13]
Thomas H,Cowin AJ,Mills SJ. The Importance of Pericytes in Healing: Wounds and other Pathologies[J]. Int J Mol Sci, 2017, 18(6): pii: E1129.
[14]
Dulauroy S,Di Carlo SE,Langa F, et al. Lineage tracing and genetic ablation of ADAM12(+) perivascular cells identify a major source of profibrotic cells during acute tissue injury[J]. Nat Med, 2012, 18(8): 1262-1270.
[15]
Ogawa R. High blood pressure (hypertension) may influence the results of clinical trials for scar and keloid treatments[J]. Plast Reconstr Surg, 2013, 132(6): 1074e-1075e.
[16]
付小兵, 程飚. 病理性瘢痕治疗现状与展望[J]. 中华整形外科杂志,2006, 22(2): 146-149.
[17]
Zhang L,Qin H,Wu Z, et al. Identification of the potential targets for keloid and hypertrophic scar prevention[J]. J Dermatolog Treat, 2018, 29(6): 600-605.
[18]
Tonnesen MG,Feng X,Clark RA. Angiogenesis in wound healing[J]. J Investig Dermatol Symp Proc, 2000, 5(1): 40-46.
[19]
Eming SA,Brachvogel B,Odorisio T, et al. Regulation of angiogenesis: Wound healing as a model[J]. Prog Histochem Cytochem, 2008, 42(3): 115-170.
[20]
Jang YC,Arumugam S,Gibran NS, et al. Role of (v) integrins and angiogenesis during wound repair[J]. Wound Repair Regen, 2010, 7(5): 375-380.
[21]
Wilgus TA,Ferreira AM,Oberyszyn TM, et al. Regulation of scar formation by vascular endothelial growth factor[J]. Lab Invest, 2008, 88(6): 579-590.
[22]
沈锐, 利天增, 祁少海,等. 靶向血管治疗增生性瘢痕的实验研究[J]. 中华整形外科杂志,2003, 19(4): 254-257.
[23]
Fujiwara M,Muragaki Y,Ooshima A. Upregulation of transforming growth factor-β1 and vascular endothelial growth factor in cultured keloid fibroblasts: relevance to angiogenic activity[J]. Arch Dermatol Res, 2005, 297(4): 161-169.
[24]
Fujiwara M,Muragaki Y,Ooshima A. Keloid-derived fibroblasts show increased secretion of factors involved in collagen turnover and depend on matrix metalloproteinase for migration[J]. Br J Dermatol, 2015, 153(2): 295-300.
[25]
Christopher G. Engeland. Stress, Aging, and Wound Healing[M]. New York: Springer, 2013.
[26]
Szpaderska AM,Zuckerman, JD,DiPietro LA. Differential Injury Responses in Oral Mucosal and Cutaneous Wounds[J]. J Dent Res, 2003, 82(8): 621-626.
[27]
姜笃银, 付小兵, 陈伟,等. 血管生成因子及其受体过表达与瘢痕疙瘩侵袭性生长[J]. 中华整形外科杂志,2004, 20(2): 128-131.
[28]
李高峰, 罗成群, 刘浔阳,等. 瘢痕内微循环的变化[J]. 中华医学美学美容杂志,2005, 11(4): 223-226.
[29]
van der Veer WM,Niessen FB,Ferreira JA, et al. Time course of the angiogenic response during normotrophic and hypertrophic scar formation in humans[J]. Wound Repair Regen, 2011, 19(3): 292-301.
[30]
Elpek GÖ. Angiogenesis and liver fibrosis[J]. World J Hepatol, 2015, 7(3): 377-391.
[31]
Farkas L,Gauldie J,Voelkel NF, et al. Pulmonary hypertension and idiopathic pulmonary fibrosis: a tale of angiogenesis, apoptosis, and growth factors[J]. Am J Respir Cell Mol Biol, 2011, 45(1): 1-15.
[32]
沈锐, 利天增, 祁少海,等. 血管内皮细胞生长因子在烧伤后肉芽组织和增生性瘢痕中的表达[J]. 中国康复理论与实践,2002, 8(1): 1-2.
[33]
Ren HT,Hu H,Li Y, et al. Endostatin inhibits hypertrophic scarring in a rabbit ear model[J]. J Zhejiang Univ Sci B, 2013, 14(3): 224-230.
[34]
Wietecha MS,Król MJ,Michalczyk ER, et al. Pigment epithelium-derived factor as a multifunctional regulator of wound healing[J]. Am J Physiol Heart Circ Physiol, 2015, 309(5): H812-826.
[35]
Nagy JA,Benjamin L,Zeng H, et al. Vascular permeability, vascular hyperpermeability and angiogenesis[J]. Angiogenesis, 2008, 11(2): 109-119.
[36]
Lingen MW. Role of leukocytes and endothelial cells in the development of angiogenesis in inflammation and wound healing[J]. Arch Pathol Lab Med, 2001, 125(1): 67-71.
[37]
Jackson CJ,Xue M,Thompson P. Activated protein C prevents inflammation yet stimulates angiogenesis to promote cutaneous wound healing[J]. Wound Repair Regen, 2005, 13(3): 284-294.
[38]
Mathai SK,Gulati M,Peng X, et al. Circulating monocytes from systemic sclerosis patients with interstitial lung disease show an enhanced profibrotic phenotype[J]. Lab Invest, 2010, 90(6): 812-823.
[39]
Laplante P,Sirois I,Raymond MA, et al. Caspase-3-mediated secretion of connective tissue growth factor by apoptotic endothelial cells promotes fibrosis[J]. Cell Death Differ, 2010, 17(2): 291-303.
[40]
Koh TJ,DiPietro LA. Inflammation and wound healing: the role of the macrophage[J]. Expert Rev Mol Med, 2011, 13: e23.
[41]
Wynn TA. Cellular and molecular mechanisms of fibrosis[J]. J Pathol, 2010, 214(2): 199-210.
[42]
Murray LA,Chen Q,Kramer MS, et al. TGF-beta driven lung fibrosis is macrophage dependent and blocked by Serum amyloid P[J]. Int J Biochem Cell Biol, 2011, 43(1): 154-162.
[43]
Perez-Aso M,Chiriboga L,Cronstein BN. Pharmacological blockade of adenosine A2A receptors diminishes scarring[J]. FASEB J, 2012, 26(10): 4254-4263.
[44]
Katebi M,Fernandez P,Chan ES, et al. Adenosine A2A receptor blockade or deletion diminishes fibrocyte accumulation in the skin in a murine model of scleroderma, Bleomycin-induced Fibrosis[J]. Inflammation, 2008, 31(5): 299-303.
[45]
Hunt TK,Hopf H,Hussain Z. Physiology of wound healing[J]. Adv Skin Wound Care, 2000, 13(2 Suppl): 6-11.
[46]
Wong VW,Rustad KC,Akaishi S. et al. Focal adhesion kinase links mechanical force to skin fibrosis via inflammatory signaling[J]. Nat Med, 2011, 18(1): 148-152.
[47]
Wong VW,Paterno J,Sorkin M, et al. Mechanical force prolongs acute inflammation via T-cell-dependent pathways during scar formation[J]. FASEB J, 2011, 25(12): 4498-4510.
[48]
Li P,Li-Tsang CWP,Deng X, et al. The recovery of post-burn hypertrophic scar in a monitored pressure therapy intervention programme and the timing of intervention[J]. Burns, 2018, 44(6): 1451-1467.
[49]
Park TH,Park JH,Tirgan MH, et al. Reply: Outcomes of surgical excision with pressure therapy using magnets and identification of risk factors for recurrent keloids[J]. Plast Reconstr Surg, 2013, 132(4): 667e-668e.
[50]
van Leeuwen MC,van der Wal MB,Bulstra AE, et al. Intralesional cryotherapy for treatment of keloid scars: a prospective study[J]. Plast Reconstr Surg, 2015, 135(2): 580-589.
[51]
Har-Shai Y,Amar M,Sabo E. Intralesional cryotherapy for enhancing the involution of hypertrophic scars and keloids[J]. Plast Reconstr Surg, 2003, 111(6): 1841-1852.
[52]
Sabry HH,Abdel Rahman SH,Hussein MS, et al. The Efficacy of Combining Fractional Carbon Dioxide Laser With Verapamil Hydrochloride or 5-Fluorouracil in the Treatment of Hypertrophic Scars and Keloids: A Clinical and Immunohistochemical Study[J]. Dermatol Surg, 2019, 45(4): 536-546.
[53]
Zuccaro J,Ziolkowski N,Fish J. A Systematic Review of the Effectiveness of Laser Therapy for Hypertrophic Burn Scars[J]. Clin Plast Surg, 2017, 44(4): 767-779.
[54]
Diao JS,Xia WS,Guo SZ. Bevacizumab: A potential agent for prevention and treatment of hypertrophic scar[J]. Burns, 2010, 36(7): 1136-1137.
[1] 刘佳璇, 何迈越, 李俏, 徐兵河. 阿帕替尼在晚期乳腺癌治疗中的临床研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(01): 1-5.
[2] 林昌盛, 战军, 肖雪. 上皮性卵巢癌患者诊疗中基因检测及分子靶向药物治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 505-510.
[3] 居晓庆, 金蕴洁, 王晓燕. 剖宫产术后瘢痕子宫患者再次妊娠阴道分娩发生子宫破裂的影响因素分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 575-581.
[4] 杨一君, 董雯, 刘晓平, 石灿, 张磊, 谷琎, 龚咪, 华馥. 腹腔镜折叠对接缝合联合宫腔镜憩室开渠法治疗剖宫产瘢痕憩室的疗效[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(03): 330-337.
[5] 周子慧, 李恭驰, 李炳辉, 王知, 刘慧真, 王卉, 邹利军. 细胞自噬在创面愈合中作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 542-546.
[6] 陈继秋, 朱世辉. 皮肤牵张装置的临床应用现状[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 451-453.
[7] 全勇, 冉新泽, 胡梦佳, 陈芳, 陈乃成, 廖伟年, 陈默, 申明强, 陈石磊, 王崧, 王军平. 低氧习服在小鼠造血干细胞急性放射损伤修复中的作用观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 293-298.
[8] 甄妙, 李婧婷, 王鹏, 舒斌. 对表皮干细胞外泌体影响增生性瘢痕成纤维细胞作用的观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(02): 134-143.
[9] 中国老年医学学会烧创伤分会, 中国生物材料学会烧创伤创面修复材料分会. 中国糖尿病足截肢(趾)治疗专家共识(2022年版)[J]. 中华损伤与修复杂志(电子版), 2023, 18(01): 1-9.
[10] 张文涵, 王成. 瘢痕鳞状细胞癌的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(01): 59-64.
[11] 王一淼, 何培杰. 成纤维细胞在增生性瘢痕形成中的作用及调控因素[J]. 中华损伤与修复杂志(电子版), 2023, 18(01): 78-85.
[12] 葛盈盈, 岳金, 薛令法, 许尧祥, 赵浩然, 崔明雪, 肖文林. 靶向p38丝裂素活化蛋白激酶对兔唇裂术后瘢痕增生的影响[J]. 中华口腔医学研究杂志(电子版), 2023, 17(01): 37-44.
[13] 张原, 李小龙, 王亚鹏. 胰腺癌中ANGPTL2蛋白与免疫抑制细胞浸润的关系及临床意义[J]. 中华普外科手术学杂志(电子版), 2023, 17(02): 145-148.
[14] 谭林, 蒲运刚, 朱顺, 杨希. 急性呼吸窘迫综合征患者血清FGF21、ANGPTL4、HO-1表达及其临床意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 227-229.
[15] 颜凡辉, 赵明俐, 李颖, 郭方明, 詹景冬, 赵英杰, 王阳, 张艳芬, 赵笑梅. 急性冠脉综合征患者冠脉血管病变程度与血清TNF-α、VEGF水平相关性研究[J]. 中华诊断学电子杂志, 2023, 11(03): 158-164.
阅读次数
全文


摘要