| [1] |
Leyane TS, Jere SW, Houreld NN. Cellular signalling and photobiomodulation in chronic wound repair[J]. Int J Mol Sci, 2021,22(20):11223.
|
| [2] |
Yan R, Yu F, Strandlund K, et al. Analyzing factors affecting quality of life in patients hospitalized with chronic wound[J]. Wound Repair Regen, 2021,29(1):70-78.
|
| [3] |
Carter MJ, DaVanzo J, Haught R, et al. Chronic wound prevalence and the associated cost of treatment in medicare beneficiaries: changes between 2014 and 2019[J]. J Med Econ, 2023,26(1):894-901.
|
| [4] |
Kapp S, Santamaria N. The financial and quality-of-life cost to patients living with a chronic wound in the community[J]. Int Wound J, 2017,14(6):1108-1119.
|
| [5] |
Fernández-Guarino M, Bacci S, Pérez González LA, et al. The role of physical therapies in wound healing and assisted scarring[J]. Int J Mol Sci, 2023,24(8):7487.
|
| [6] |
Hu Y, Yu L, Dai Q, et al. Multifunctional antibacterial hydrogels for chronic wound management[J]. Biomater Sci, 2024,12(10):2460-2479.
|
| [7] |
Wang K, Liu Y, Wang H, et al. Multi-functional nanofilms capable of angiogenesis, near-infrared-triggered anti-bacterial activity and inflammatory regulation for infected wound healing[J]. Biomater Adv, 2022,142:213154.
|
| [8] |
Zhang Y, Sun J, Liu Y, et al. Multi-functional dressing with curcumin displays anti-inflammatory, antioxidant, angiogenic, and collagen regeneration effects in diabetic wound healing[J]. J Mater Sci, 2025,60(14):6217-6234.
|
| [9] |
张铭,于浩,陈铭锐. 压力性损伤创面治疗方法研究进展[J]. 中华整形外科杂志,2024,40(11):1255-1262.
|
| [10] |
谭谦,徐晔. 慢性创面治疗的理论和策略[J]. 中华烧伤杂志,2020,36(9):798-802.
|
| [11] |
Hu Y, Zhao Y, Wu H, et al. Global hotspots and trends of diabetic foot ulcer therapy: a bibliometric analysis from 2004 and 2023[J]. Int J Low Extrem Wounds, 2025:15347346241311065.
|
| [12] |
Elemek E, Gelmez YM, Hekimoğlu ER, et al. Clinical and histological comparison of healing by steel scalpel, diode laser, and radiofrequency in palatal wound: an animal study[J]. Niger J Clin Pract, 2023,26(9):1264-1272.
|
| [13] |
Jamalpour MR, Pouresmaeil N, Khazai S. Enhanced wound closure in rabbit oral vestibule: a comparative analysis of suturing and laser tissue soldering[J]. BMC Oral Health, 2024,24(1):1215.
|
| [14] |
Wongchadakul P, Rattanadecho P, Jiamjiroch K. Experimental analysis of thermal transport in low-level laser therapy on skin tissue: the influence on therapeutic efficacy, pain sensation and dry skin wound[J]. Int J Therm Sci, 2024,199.
|
| [15] |
Carroll JD, Milward MR, Cooper PR, et al. Developments in low level light therapy (LLLT) for dentistry[J]. Dent Mater, 2014,30(5):465-475.
|
| [16] |
Nadhreen AA, Alamoudi NM, Elkhodary HM. Low-level laser therapy in dentistry: extra-oral applications[J]. Niger J Clin Pract, 2019,22(10):1313-1318.
|
| [17] |
Ferro AP, de Jesus Guirro RR, Orellana MD, et al. Photobiomodulation with laser and LED on mesenchymal stem cells viability and wound closure in vitro[J]. Lasers Med Sci, 2024,39(1):205.
|
| [18] |
Lee YI, Lee SG, Ham S, et al. Exploring the safety and efficacy of organic light-emitting diode in skin rejuvenation and wound healing[J]. Yonsei Med J, 2024,65(2):98-107.
|
| [19] |
Giannakopoulos E, Katopodi A, Rallis M, et al. The effects of low power laser light at 661 nm on wound healing in a scratch assay fibroblast model[J]. Lasers Med Sci, 2022,38(1):27.
|
| [20] |
Huth S, Huth L, Marquardt Y, et al. MMP-3 plays a major role in calcium pantothenate-promoted wound healing after fractional ablative laser treatment[J]. Lasers Med Sci, 2022,37(2):887-894.
|
| [21] |
Jere SW, Houreld NN. Regulatory processes of the canonical Wnt/β-catenin pathway and photobiomodulation in diabetic wound repair[J]. Int J Mol Sci, 2022,23(8):4210.
|
| [22] |
BangHong J, YuKun W, Ao S, et al. Low-level laser activates Wnt/β-catenin signaling pathway-promoting hair follicle stem cell regeneration and wound healing: upregulate the expression of key downstream gene Lef 1[J]. Skin Res Technol, 2024,30(6):e13807.
|
| [23] |
Hu B, Zhao X, Lu Y, et al. A transient photoactivation of epidermal stem cells by femtosecond laser promotes skin wound healing[J]. J Biophotonics, 2022,15(12):e202200217.
|
| [24] |
Jere SW, Abrahamse H, Houreld NN. Interaction of the AKT and β-catenin signalling pathways and the influence of photobiomodulation on cellular signalling proteins in diabetic wound healing[J]. J Biomed Sci, 2023,30(1):81.
|
| [25] |
Kasowanjete P, Abrahamse H, Houreld NN. Photobiomodulation at 660 nm stimulates in vitro diabetic wound healing via the Ras/MAPK pathway[J]. Cells, 2023,12(7):1080.
|
| [26] |
Leyane TS, Jere SW, Houreld NN. Effect of photobiomodulation at 830 nm on gene expression correlated with JAK/STAT signalling in wounded and diabetic wounded fibroblasts in vitro[J]. J Biophotonics, 2024,17(2):e202300230.
|
| [27] |
Mgwenya TN, Abrahamse H, Houreld NN. Modulatory effects of 830 nm on diabetic wounded fibroblast cells: an in vitro study on inflammatory cytokines[J]. Photobiomodul Photomed Laser Surg, 2024,42(11):676-692.
|
| [28] |
Rajendran NK, Houreld NN, Abrahamse H. In vitro wound healing potential of photobiomodulation is possibly mediated by its stimulatory effect on AKT expression in adipose-derived stem cells[J]. Oxid Med Cell Longev, 2021,2021:6664627.
|
| [29] |
Zhang G, Yi L, Wang C, et al. Photobiomodulation promotes angiogenesis in wound healing through stimulating the nuclear translocation of VEGFR2 and STAT3[J]. J Photochem Photobiol B, 2022,237:112573.
|
| [30] |
Li H, Liu Y, Li X, et al. A histological evaluation of the mice oral mucosal tissue wounds excised with diode laser, Er:YAG laser, and cold scalpel[J]. Lasers Med Sci, 2022,37(6):2707-2715.
|
| [31] |
Zuhayri H, Nikolaev VV, Lepekhina TB, et al. The in vivo quantitative assessment of the effectiveness of low-dose photodynamic therapy on wound healing using optical coherence tomography[J]. Pharmaceutics, 2022,14(2):399.
|
| [32] |
Astuti SD, Sulistyo A, Setiawatie EM, et al. An in-vivo study of photobiomodulation using 403 nm and 649 nm diode lasers for molar tooth extraction wound healing in wistar rats[J]. Odontology, 2022,110(2):240-253.
|
| [33] |
Morshedzadeh G, Aslroosta H, Vafaei M. Effect of GaAlAs 940 nm photobiomodulation on palatal wound healing after free gingival graft surgery: a split mouth randomized controlled clinical trial[J]. BMC Oral Health, 2022,22(1):202.
|
| [34] |
Tang D, Liu C, Chen X, et al. The associations between diode laser (810 nm) therapy and chronic wound healing and pain relief: light into the chronic wound patient's life[J]. Wound Repair Regen, 2023,31(2):227-232.
|
| [35] |
Besser M, Schaeler L, Plattfaut I, et al. Pulsed low-intensity laser treatment stimulates wound healing without enhancing biofilm development in vitro[J]. J Photochem Photobiol B, 2022,233:112504.
|
| [36] |
Dehghanpour HR, Parvin P, Ganjali P, et al. Evaluation of photobiomodulation effect on cesarean-sectioned wound healing: a clinical study[J]. Lasers Med Sci, 2023,38(1):171.
|
| [37] |
Yoon SH, Huh BK, Abdi S, et al. The efficacy of high-intensity laser therapy in wound healing: a narrative review[J]. Lasers Med Sci, 2024,39(1):208.
|
| [38] |
张瑞媞,唐文庆,殷稚飞. 高能量激光在康复中的应用进展[J]. 中华物理医学与康复杂志,2019,41(11):874-876.
|
| [39] |
Frey R, Varjonen K. A retrospective case series of the postoperative outcome for 30 dogs with inflammatory interdigital nodules, surgically treated with carbon dioxide laser and a nonantimicrobial wound-healing protocol[J]. Vet Dermatol, 2023,34(2):150-155.
|
| [40] |
Ezzati K, Laakso EL, Salari A, et al. The beneficial effects of high-intensity laser therapy and co-interventions on musculoskeletal pain management: a systematic review[J]. J Lasers Med Sci, 2020,11(1):81-90.
|
| [41] |
Jiang B, Tang R, Zheng D, et al. Evaluation of the efficacy of ultrapulsed CO2 laser in chronic wounds[J]. Lasers Surg Med, 2021,53(4):443-449.
|
| [42] |
Laranne J, Lagerstedt A, Pukander J, et al. Wound healing and soft tissue effects of CO2, contact Nd: YAG and combined CO2-Nd: YAG laser beams on rabbit trachea[J]. Acta Otolaryngol, 1997,117(6):909-917.
|
| [43] |
Hong SE, Hong MK, Kang SR, et al. Effects of neodymium-yttrium-aluminum garnet (Nd:YAG) pulsed high-intensity laser therapy on full thickness wound healing in an experimental animal model[J]. J Cosmet Laser Ther, 2016,18(8):432-437.
|
| [44] |
Lu Q, Yin Z, Shen X, et al. Clinical effects of high-intensity laser therapy on patients with chronic refractory wounds: a randomised controlled trial[J]. BMJ Open, 2021,11(7):e045866.
|
| [45] |
Fisher SE, Frame JW, Browne RM, et al. A comparative histological study of wound healing following CO2 laser and conventional surgical excision of canine buccal mucosa[J]. Arch Oral Biol, 1983,28(4):287-291.
|
| [46] |
Guan H, Zhang D, Ma X, et al. Efficacy and safety of CO2 laser in the treatment of chronic wounds: a retrospective matched cohort trial[J]. Lasers Surg Med, 2022,54(4):490-501.
|
| [47] |
Zand N, Fateh M, Ataie-Fashtami L, et al. Promoting wound healing in minor recurrent aphthous stomatitis by non-thermal, non-ablative CO2 laser therapy: a pilot study[J]. Photomed Laser Surg, 2012,30(12):719-723.
|
| [48] |
Fortune DS, Huang S, Soto J, et al. Effect of pulse duration on wound healing using a CO2 laser[J]. Laryngoscope, 1998,108(6):843-848.
|
| [49] |
Cotomacio CC, Calarga CC, Yshikawa BK, et al. Wound healing process with different photobiomodulation therapy protocols to treat 5-FU-induced oral mucositis in hamsters[J]. Arch Oral Biol, 2021,131:105250.
|
| [50] |
de Oliveira LP, de Lima Chagas A, de Souza TR, et al. Low-power laser in increasing doses improve wound healing process in rats[J]. Lasers Med Sci, 2023,38(1):60.
|
| [51] |
Timimi ZA. The impact of low-power therapeutic lasers at 904 nm on the healing process of wounds and the relationships between extracellular matrix components and myofibroblasts[J]. Int J Low Extrem Wounds, 2024:15347346241273179.
|
| [52] |
Zuhayri H, Samarinova AA, Borisov AV, et al. Quantitative assessment of low-dose photodynamic therapy effects on diabetic wound healing using Raman spectroscopy[J]. Pharmaceutics, 2023,15(2):595.
|
| [53] |
Yoon J, Park JH, Choi JW, et al. Optimal fluence and duration of low-level laser therapy for efficient wound healing in mice[J]. Ann Dermatol, 2021,33(4):318-323.
|
| [54] |
Dhlamini T, Houreld NN. Clinical effect of photobiomodulation on wound healing of diabetic foot ulcers: does skin color needs to be considered?[J]. J Diabetes Res, 2022,2022:3312840.
|
| [55] |
Gogia PP. Physical therapy modalities for wound management[J]. Ostomy Wound Manage, 1996,42(1):46-54.
|
| [56] |
卫贞祺,王颖竹,傅海霞,等. 红光治疗对腹壁疝开放修补手术切口愈合的影响分析[J]. 中华疝和腹壁外科杂志(电子版),2021,15(5):517-520.
|
| [57] |
de Vasconcelos Catão MH, Nonaka CF, de Albuquerque RL Jr, et al. Effects of red laser, infrared, photodynamic therapy, and green LED on the healing process of third-degree burns: clinical and histological study in rats[J]. Lasers Med Sci, 2015,30(1):421-428.
|
| [58] |
杨露倩,郑元义,李晓,等. 低强度脉冲超声治疗周围神经损伤的研究进展[J]. 中华超声影像学杂志,2023,32(12):1101-1104.
|
| [59] |
徐城,刘丹彦. 低强度和高强度聚焦超声治疗慢性软组织损伤性疼痛效果的比较[J]. 中华麻醉学杂志,2015,35(7):815-818.
|
| [60] |
Tkz C, Angin A, Demrel P, et al. Low-level laser therapy is more effective than pulse ultrasound treatment on wound healing: comparative experimental study[J]. Turkiye Klinikleri J Med Sci, 2010,30(1):135-143.
|
| [61] |
Demir H, Yaray S, Kirnap M, et al. Comparison of the effects of laser and ultrasound treatments on experimental wound healing in rats[J]. J Rehabil Res Dev, 2004,41(5):721-727.
|