[1] |
Murray CJ, Lopez AD. Measuring the global burden of disease[J]. N Engl J Med, 2013, 369(5):448-457.
|
[2] |
Murray CJ, Atkinson C, Bhalla K, et al. The state of US health, 1990-2010: burden of diseases, injuries, and risk factors[J]. JAMA, 2013, 310(6):591-608.
|
[3] |
Gugliotta M, da Costa BR, Dabis E, et al. Surgical versus conservative treatment for lumbar disc herniation: a prospective cohort study[J]. BMJ Open, 2016, 6(12):e012938.
|
[4] |
Alhashash M, Shousha M, Boehm H. Adjacent Segment Disease After Cervical Spine Fusion: Evaluation of a 70 Patient Long Term Follow-up[J]. Spine (Phila Pa 1976), 2017.
|
[5] |
Wang H, Ma L, Yang D, et al. Incidence and Risk Factors of Postoperative Adjacent Segment Degeneration Following Anterior Decompression and Instrumented Fusion for Degenerative Disorders of the Cervical Spine[J]. World Neurosurg, 2017, 105:78-85.
|
[6] |
陈学明,刘亚东,许崧杰,等. 单节段腰椎间盘突出症单纯髓核摘除术后10年以上随诊观察[J]. 中国脊柱脊髓杂志,2011, 21(8):644-649.
|
[7] |
Miao J, Shen Y, Li C, et al. Cervical Artificial Disc Replacement With Discover Prosthesis Does Not Reduce the Midterm Risk of Heterotopic Ossification: Results of a Cohort Study[J]. Clin Spine Surg, 2018.
|
[8] |
Di Martino A, Papalia R, Albo E, et al. Cervical spine alignment in disc arthroplasty: should we change our perspective?[J]. Eur Spine J, 2015, 24 Suppl 7:810-825.
|
[9] |
Skeppholm M, Henriques T, Tullberg T. Higher reoperation rate following cervical disc replacement in a retrospective, long-term comparative study of 715 patients[J]. Eur Spine J, 2017.
|
[10] |
Ghannam M, Jumah F, Mansour S, et al. Surgical anatomy, radiological features, and molecular biology of the lumbar intervertebral discs[J]. Clin Anat, 2017, 30(2):251-266.
|
[11] |
Roberts S, Urban JP, Evans H, et al. Transport properties of the human cartilage endplate in relation to its composition and calcification[J]. Spine (Phila Pa 1976), 1996, 21(4):415-420.
|
[12] |
Zhou X, Chen L, Grad S, et al. The roles and perspectives of microRNAs as biomarkers for intervertebral disc degeneration[J]. J Tissue Eng Regen Med, 2017, 11(12):3481-3487.
|
[13] |
Gooyers CE, Callaghan JP. Peak Stress in the Annulus Fibrosus Under Cyclic Biaxial Tensile Loading[J]. J Biomech Eng, 2016, 138(5):051006.
|
[14] |
张亮,王静成,冯新民,等. 髓核摘除联合纤维环缝合治疗腰椎间盘突出症的早期疗效观察[J]. 中国医师杂志,2017, 19(10):1492-1495.
|
[15] |
Borde B, Grunert P, Hartl R, et al. Injectable, high-density collagen gels for annulus fibrosus repair: An in vitro rat tail model[J]. J Biomed Mater Res A, 2015, 103(8):2571-2581.
|
[16] |
Cruz MA, Hom WW, DiStefano TJ, et al. Cell-Seeded Adhesive Biomaterial for Repair of Annulus Fibrosus Defects in Intervertebral Discs[J]. Tissue Eng Part A, 2018, 24(3/4):187-198.
|
[17] |
Pirvu T, Blanquer SB, Benneker LM, et al. A combined biomaterial and cellular approach for annulus fibrosus rupture repair[J]. Biomaterials, 2015, 42:11-19.
|
[18] |
Xin L, Zhang C, Zhong F, et al. Minimal invasive annulotomy for induction of disc degeneration and implantation of poly (lactic-co-glycolic acid) (PLGA) plugs for annular repair in a rabbit model[J]. Eur J Med Res, 2016, 21:7.
|
[19] |
Pereira DR, Silva-Correia J, Oliveira JM, et al. Nanocellulose reinforced gellan-gum hydrogels as potential biological substitutes for annulus fibrosus tissue regeneration[J]. Nanomedicine, 2017, 14(3):897-908.
|
[20] |
Wang Y, Wang X, Shang J, et al. Repairing the ruptured annular fibrosus by using type I collagen combined with citric acid, EDC and NHS: an in vivo study[J]. Eur Spine J, 2017, 26(3):884-893.
|
[21] |
袁德超,陈竹,向小聪,等. BMG/PBST双相组织工程纤维环的体外构建[J]. 中华骨科杂志,2016, 36(1):35-42.
|
[22] |
Illien-Jünger S, Sedaghatpour DD, Laudier DM, et al. Development of a bovine decellularized extracellular matrix-biomaterial for nucleus pulposus regeneration[J]. J Orthop Res, 2016, 34(5):876-888.
|
[23] |
Wachs RA, Hoogenboezem EN, Huda HI, et al. Creation of an injectable in situ gelling native extracellular matrix for nucleus pulposus tissue engineering[J]. Spine J, 2017, 17(3):435-444.
|
[24] |
Shan Z, Lin X, Wang S, et al. An injectable nucleus pulposus cell-modified decellularized scaffold: biocompatible material for prevention of disc degeneration[J]. Oncotarget, 2017, 8(25):40276-40288.
|
[25] |
Growney Kalaf EA, Flores R, Bledsoe JG, et al. Characterization of slow-gelling alginate hydrogels for intervertebral disc tissue-engineering applications[J]. Mater Sci Eng C Mater Biol Appl, 2016, 63:198-210.
|
[26] |
Wan S, Borland S, Richardson SM, et al. Self-assembling peptide hydrogel for intervertebral disc tissue engineering[J]. Acta Biomater, 2016, 46:29-40.
|
[27] |
刘龙刚,伍耀宏,陶晖,等. 修饰有BMP-7功能片段的功能化自组装多肽纳米纤维水凝胶RADKPS制备及其生物相容性研究[J]. 中国修复重建外科杂志,2016, 30(4):491-497.
|
[28] |
Li Z, Lang G, Chen X, et al. Polyurethane scaffold with in situ swelling capacity for nucleus pulposus replacement[J]. Biomaterials, 2016, 84:196-209.
|
[29] |
Woiciechowsky C, Abbushi A, Zenclussen ML, et al. Regeneration of nucleus pulposus tissue in an ovine intervertebral disc degeneration model by cell-free resorbable polymer scaffolds[J]. J Tissue Eng Regen Med, 2014, 8(10):811-820.
|
[30] |
Kang R, Li H, Lysdahl H, et al. Cyanoacrylate medical glue application in intervertebral disc annulus defect repair: Mechanical and biocompatible evaluation[J]. J Biomed Mater Res B Appl Biomater, 2017, 105(1):14-20.
|
[31] |
Hu J, Lu Y, Cai L, et al. Functional compressive mechanics and tissue biocompatibility of an injectable SF/PU hydrogel for nucleus pulposus replacement[J]. Sci Rep, 2017, 7(1):2347.
|
[32] |
袁振中,陈跃平. 蚕丝丝素蛋白/壳聚糖支架在骨科再生医学中的作用与特点[J]. 中国组织工程研究,2017, 21(14):2280-2284.
|
[33] |
Tsaryk R, Gloria A, Russo T, et al. Collagen-low molecular weight hyaluronic acid semi-interpenetrating network loaded with gelatin microspheres for cell and growth factor delivery for nucleus pulposus regeneration[J]. Acta Biomater, 2015, 20:10-21.
|
[34] |
Priyadarshani P, Li Y, Yang S, et al. Injectable hydrogel provides growth-permissive environment for human nucleus pulposus cells[J]. J Biomed Mater Res A, 2016, 104(2):419-426.
|
[35] |
Gan Y, Li P, Wang L, et al. An interpenetrating network-strengthened and toughened hydrogel that supports cell-based nucleus pulposus regeneration[J]. Biomaterials, 2017, 136:12-28.
|
[36] |
Sun Z, Luo B, Liu Z, et al. Effect of perfluorotributylamine-enriched alginate on nucleus pulposus cell: Implications for intervertebral disc regeneration[J]. Biomaterials, 2016, 82:34-47.
|
[37] |
Sloan SR, Jr., Galesso D, Secchieri C, et al. Initial investigation of individual and combined annulus fibrosus and nucleus pulposus repair ex vivo[J]. Acta Biomater, 2017, 59:192-199.
|
[38] |
Choy AT, Chan BP. A Structurally and Functionally Biomimetic Biphasic Scaffold for Intervertebral Disc Tissue Engineering[J]. PLoS One, 2015, 10(6):e0131827.
|
[39] |
许海委,徐宝山,杨强,等. 新型一体化纤维环-髓核双相支架的制备与评估[J]. 中国修复重建外科杂志,2013, 27(4):475-480.
|
[40] |
Moriguchi Y, Mojica-Santiago J, Grunert P, et al. Total disc replacement using tissue-engineered intervertebral discs in the canine cervical spine[J]. PLoS One, 2017, 12(10):e0185716.
|