[1] |
White CE, Renz EM. Advances in surgical care: management of severe burn injury[J]. Crit Care Med, 2008, 36 (7 Suppl): S318-324.
|
[2] |
胡森,盛志勇. 重视战、创(烧)伤休克现场非常规救治技术研究 [J]. 解放军医学杂志,2011, 36 (1): 5-7.
|
[3] |
Saffle JI. The phenomenon of " fluid creep" in acute burn resuscitation[J]. J Burn Care Res, 2007, 28(3): 382-395.
|
[4] |
Oda J, Yamashita K, Inoue T, et al. Resuscitation fluid volume and abdominal compartment syndrome in patients with major burns[J]. Burns, 2006, 32(2): 151-154.
|
[5] |
Magnotti LJ, Xu DZ, Lu Q, et al. Gut-derived mesenteric lymph: a link between burn and lung injury[J]. Arch Surg 1999, 134(12): 1333-1340; discussion 1340-1341.
|
[6] |
Ding N, Ping L, Feng L, et al. Histone deacetylase 6 activity is critical for the metastasis of Burkitt's lymphoma cells[J]. Cancer Cell Int, 2014, 14(1): 139.
|
[7] |
Lee JS, Lee GM. Effect of sodium butyrate on autophagy and apoptosis in Chinese hamster ovary cells[J]. Biotechnol Prog, 2012, 28(2): 349-357.
|
[8] |
Roy AC, Chang G, Ma N, et al. Sodium butyrate suppresses NOD1-mediated inflammatory molecules expressed in bovine hepatocytes during iE-DAP and LPS treatment[J]. J Cell Physiol, 2019, 234(11): 19602-19620.
|
[9] |
Tang FB, Dai YL, Zhou GY, et al. Valproic acid treatment inhibits vasopermeability and improves survival in rats with lethal scald injury[J]. J Burn Care Res, 2018, 39(2): 209-217.
|
[10] |
Bali P, Pranpat M, Bradner J, et al. Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors[J]. J Biol Chem, 2005, 280(29): 26729-26734.
|
[11] |
Monafo WW. Initial management of burns [J]. New Eng J Med, 1996, 335(21): 1581-1586.
|
[12] |
Alvarado R, Chung KK, Cancio LC, et al. Burn resuscitation[J]. Burns, 2009, 35(1): 4-14.
|
[13] |
Cope O, Moore FD. A STUDY OF CAPILLARY PERMEABILITY IN EXPERIMENTAL BURNS AND BURN SHOCK USING RADIOACTIVE DYES IN BLOOD AND LYMPH[J]. J Clin Invest, 1944, 23(2): 241-257.
|
[14] |
Cartotto R, Zhou A. Fluid creep: the pendulum hasn′t swung back yet[J]. J Burn Care Res, 2010, 31(4): 551-558.
|
[15] |
Faraklas I, Cochran A, Saffle J. Review of a fluid resuscitation protocol: "fluid creep" is not due to nursing error[J]. J Burn Care Res, 2012, 33(1): 74-83.
|
[16] |
Shah A, Kramer GC, Grady JJ, et al. Meta-analysis of fluid require-ments for burn injury 1980?2002[J]. J Burn Care Rehabil, 2003, 152: S118.
|
[17] |
Strang SG, Van Lieshout EM, Breederveld RS, et al. A systematic review on intra-abdominal pressure in severely burned patients[J]. Burns, 2014, 40(1): 9-16.
|
[18] |
Luo HM, Hu S, Zhou GY, et al. The effects of ulinastatin on systemic inflammation, visceral vasopermeability and tissue water content in rats with scald injury[J]. Burns, 2013, 39(5): 916-922.
|
[19] |
Wang Z, Gotte M, Bernfield M, et al. Constitutive and accelerated shedding of murine syndecan-1 is mediated by cleavage of its core protein at a specific juxtamembrane site[J]. Biochemistry, 2005, 44(37): 12355-12361.
|
[20] |
Pries AR, Secomb TW, Gaehtgens P. The endothelial surface layer[J]. Pflugers Arch, 2000 , 440(5): 653-666.
|
[21] |
Weinbaum S, Tarbell JM, Damiano ER. The structure and function of the endothelial glycocalyx layer[J]. Annu Rev Biomed Eng, 2007, 9: 121-167.
|
[22] |
Fu BM, Tarbell JM. Mechano-sensing and transduction by endothelial surface glycocalyx: composition, structure, and function[J]. Wiley Interdiscip Rev Syst Biol Med, 2013, 5(3): 381-390.
|
[23] |
Rahbar E, Cardenas JC, Baimukanova G, et al. Endothelial glycocalyx shedding and vascular permeability in severely injured trauma patients[J]. J Transl Med, 2015, 13: 117.
|
[24] |
Lambaerts K, Wilcox-Adelman SA, Zimmermann P. The signaling mechanisms of syndecan heparan sulfate proteoglycans[J]. Curr Opin Cell Biol, 2009, 21(5): 662-669.
|
[25] |
Kozar RA, Peng Z, Zhang R, et al. Plasma restoration of endothelial glycocalyx in a rodent model of hemorrhagic shock[J]. Anesth Analg, 2011, 112(6): 1289-1295.
|
[26] |
Peng Z, Pati S, Potter D, et al. Fresh frozen plasma lessens pulmonary endothelial inflammation and hyperpermeability after hemorrhagic shock and is associated with loss of syndecan 1[J]. Shock, 2013, 40(3): 195-202.
|
[27] |
Cui N, Wang H, Long Y, et al. Dexamethasone Suppressed LPS-Induced Matrix Metalloproteinase and Its Effect on Endothelial Glycocalyx Shedding[J]. Mediators Inflamm, 2015, 2015: 912726.
|
[28] |
Lin MC, Lin CF, Li CF, et al. Anesthetic propofol overdose causes vascular hyperpermeability by reducing endothelial glycocalyx and ATP production[J]. Int J Mol Sci, 2015, 16(6): 12092-12107.
|
[29] |
Turnage RH, Nwariaku F, Murphy J, et al. Mechanisms of pulmonary microvascular dysfunction during severe burn injury[J]. World J Surg, 2002, 26(7): 848-853.
|
[30] |
Ni YF, Wang J, Yan XL, et al. Histone deacetylase inhibitor, butyrate, attenuates lipopolysaccharide-induced acute lung injury in mice[J]. Respir Res, 2010, 11: 33.
|
[31] |
Li N, Liu XX, Hong M, et al. Sodium butyrate alleviates LPS-induced acute lung injury in mice via inhibiting HMGB1 release[J]. Int Immunopharmacol, 2018, 56: 242-248.
|
[32] |
Liu J, Chang G, Huang J, et al. Sodium Butyrate Inhibits the Inflammation of Lipopolysaccharide-Induced Acute Lung Injury in Mice by Regulating the Toll-Like Receptor 4/Nuclear Factor κB Signaling Pathway[J]. J Agric Food Chem, 2019, 67(6): 1674-1682.
|
[33] |
Atkinson JJ, Senior RM. Matrix metalloproteinase-9 in lung remodeling[J]. Am J Respir Cell Mol Biol, 2003, 28(1): 12-24.
|
[34] |
Legrand C, Gilles C, Zahm JM, et al. Airway epithelial cell migration dynamics: MMP-9 role in cell extracellular matrix remodeling[J]. J Cell Biol, 1999, 146(2): 517-529.
|
[35] |
Asuthkar S, Velpula KK, Nalla AK, et al. Irradiation-induced angiogenesis is associated with an MMP-9-miR-494-syndecan-1 regulatory loop in medulloblastoma cells[J]. Oncogene, 2014, 33(15): 1922-1933.
|
[36] |
Brule S, Charnaux N, Sutton A, et al. The shedding of syndecan-4 and syndecan-1 from HeLa cells and human primary macrophages is accelerated by SDF-1/CXCL12 and mediated by the matrix metalloproteinase-9[J]. Glycobiology, 2006, 16(6): 488-501.
|
[37] |
Purushothaman A, Chen L, Yang Y, et al. Heparanase stimulation of protease expression implicates it as a master regulator of the aggressive tumor phenotype in myeloma[J]. J Biol Chem, 2008, 283(47): 32628-32636.
|
[38] |
Bauer AT, Bürgers HF, Rabie T, et al. Matrix metalloproteinase-9 mediates hypoxia-induced vascular leakage in the brain via tight junction rearrangement[J]. J Cereb Blood Flow Metab, 2010, 30(4): 837-848.
|
[39] |
Kabel AM, Omar MS, Elmaaboud MAA. Amelioration of bleomycin-induced lung fibrosis in rats by valproic acid and butyrate: Role of nuclear factor kappa-B, proinflammatory cytokines and oxidative stress[J]. Int Immunopharmacol, 2016, 39: 355-342.
|
[40] |
Vieira RS, Castoldi A, Basso PJ, et al. Butyrate Attenuates Lung Inflammation by Negatively Modulating Th9 Cells[J]. Front Immunol, 2019, 10: 67.
|
[41] |
Tang FB, Dai YL, Zhou GY, et al. Valproic acid treatment inhibits vasopermeability and improves survival in rats with lethal scald injury[J]. J Burn Care Res, 2018, 39(2): 209-217.
|
[42] |
Forsythe JA, Jiang BH, Iyer NV, et al. Activation of vascular endothelial growth factor gene transcription by hypoxiainducible factor 1[J]. Mol Cell Biol, 1996, 16(9): 4604-4613.
|