切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2021, Vol. 16 ›› Issue (02) : 132 -139. doi: 10.3877/cma.j.issn.1673-9450.2021.02.008

所属专题: 文献

论著

体外构建3D细胞压力培养模型研究压力对增生性瘢痕成纤维细胞的作用
刘宁1, 王鹏1, 蔡瑞昭1, 李猛智1, 赵菁玲1, 陈蕾1, 舒斌1, 刘旭盛1, 祁少海1,()   
  1. 1. 510080 广州,中山大学附属第一医院烧伤外科
  • 收稿日期:2021-01-09 出版日期:2021-04-01
  • 通信作者: 祁少海
  • 基金资助:
    国家自然科学基金(81971833、81971884); 广东省基础与应用基础研究基金项目(2019A1515110045、2020B1515020049)

Study on the effects of pressure on the growth characteristics of hypertrophic scar fibroblasts by establishing in vitro 3D model of cell pressure culture

Ning Liu1, Peng Wang1, Ruizhao Cai1, Mengzhi Li1, Jingling Zhao1, Lei Chen1, Bin Shu1, Xusheng Liu1, Shaohai Qi1,()   

  1. 1. Department of Burns Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
  • Received:2021-01-09 Published:2021-04-01
  • Corresponding author: Shaohai Qi
引用本文:

刘宁, 王鹏, 蔡瑞昭, 李猛智, 赵菁玲, 陈蕾, 舒斌, 刘旭盛, 祁少海. 体外构建3D细胞压力培养模型研究压力对增生性瘢痕成纤维细胞的作用[J/OL]. 中华损伤与修复杂志(电子版), 2021, 16(02): 132-139.

Ning Liu, Peng Wang, Ruizhao Cai, Mengzhi Li, Jingling Zhao, Lei Chen, Bin Shu, Xusheng Liu, Shaohai Qi. Study on the effects of pressure on the growth characteristics of hypertrophic scar fibroblasts by establishing in vitro 3D model of cell pressure culture[J/OL]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2021, 16(02): 132-139.

目的

采用Flexcell-5000C压力系统和鼠尾I型胶原构建3D细胞压力培养模型,在体外细胞水平探讨压力对增生性瘢痕成纤维细胞(HSFb)的作用。

方法

胶原酶消化法分离培养原代HSFb,采用Flexcell-5000C压力系统和鼠尾I型胶原体外构建HSFb 3D培养模型。实验分为对照组(未施压)、10 mmHg压力组、20 mmHg压力组、30 mmHg压力组。通过免疫荧光观察不同压力下HSFb的表型变化;Ki-67/Edu免疫荧光染色检测HSFb增殖能力;Annexin-V-PI流式双染检测HSFb凋亡;PI流式单染检测HSFb细胞周期;划痕实验检测HSFb迁移能力。数据比较采用单因素方差分析和LSD-t检验。

结果

激光共聚焦显微镜下可见HSFb表型随着压力增大逐渐向正常皮肤成纤维细胞(FB)转变,且在30 mmHg压力下最显著;Ki-67/Edu免疫荧光染色显示:HSFb增殖能力与压力值成反比,20 mmHg、30 mmHg组较对照组HSFb增殖能力显著降低(F=10.61,P=0.0037),而其余各组组间HSFb增殖能力差异无统计学意义(P>0.05);Annexin-V-PI流式双染显示:相比于对照组、10 mmHg压力组、20 mmHg压力组及30 mmHg压力组HSFb早期凋亡率显著升高,差异有统计学意义(F=103.8,P<0.0001),而10、20 mmHg压力组HSFb早期凋亡率较对照组差异无统计学意义(P>0.05);PI流式单染结果显示:相比于对照组、10 mmHg压力组及20 mmHg压力组,30 mmHg压力组G0/G1期HSFb百分比显著升高(F=21.58, P=0.0003),S期及G2/M期HSFb百分比显著下降(F=93.89、54.11,P<0.001、=0.0066);相比于对照组,10 mmHg及20 mmHg G0/G1期HSFb百分比显著升高,S期及G2/M期HSFb百分比显著下降(P<0.05);而20 mmHg与10 mmHg相比,HSFb细胞周期差异无统计学意义(P>0.05);划痕实验结果显示,与对照组相比,30 mmHg压力组HSFb迁移能力明显下降(t=10.66,P=0.004)。

结论

基于Flexcell-5000C压力系统和鼠尾I型胶原构建的3D细胞压力培养模型便捷稳定,压力值实时可调可控,成功验证了压力能够抑制HSFb增殖、迁移,且促进其凋亡及向Fb转分化的作用,并初步证实了30 mmHg为最佳压力值,为HS压力治疗提供了新的研究思路和体外模型。

Objective

To establish in vitro 3D model of cell culture and pressure with Flexcell-5000C pressure system and rat tail type I collagen to explore the in vitro effect of pressure on hypertrophic scar fibroblasts (HSFb) at cellular level.

Methods

The primary HSFbs were isolated and cultured by collagenase digestion. A 3D culture model of HSFb was constructed in vitro with Flexcell-5000C pressure system and rat tail type I collagen. All the HSFbs were randomly divided into control group (no pressure) and 10 mmHg , 20 mmHg and 30 mmHg pressure groups. The cytomorphosis of HSFbs in different pressure was monitored by immunofluorescence. The cellular proliferation index of HSFbs was examined by ki67/EdU immunofluorescence staining of chromosome. The HSFbs apoptosis was detected by Annexin-V-PI double flow cytometry. The cell cycle was detected by PI single staining flow cytometry and cell migration rate, by scratch assay. Data were processed with one-way analysis of variance and the LSD-t test.

Results

Examined by confocal microscope, the morhpological changes happened in HSFbs under mechanical pressure. The HSFb phenotype was gradually transferred to normal fibroblast (FB) along with the increase of the pressure, especially under 30 mmHg pressure. It was indicated by Ki-67/Edu immunofluorescence staining that the proliferation capacity of HSFbs was inversely proportional to the pressure value. The proliferation value of HSFbs in 20 mmHg and 30 mmHg groups was evidently lower than that in control group, the difference was statistically significant (F=10.61, P=0.0037). But there was no significant difference of the proliferation value among all the other groups (P>0.05). It was indicated by Annexin-V-PI double flow cytometry that the early apoptosis rate in 30 mmHg group was much higher than that in the control, 10 mmHg and 20 mmHg groups (F=103.8, P<0.0001). And there was no significant difference of apoptosis between 10 mmHg, 20 mmHg and control groups(P> 0.05). It was exhibited by PI single staining flow cytometry that the HSFb percentage in 30 mmHg group increased in G0/G1 phases(F=21.58, P=0.0003) and decreased in S and G2/M phases significantly(F=93.89、54.11, P<0.001、=0.0066), when compared with that in control 10 mmHg and 20 mmHg groups. Furthermore, the HSFb percentage in G0/G1 phases in the 10 mmHg and 20 mmHg groups was much higher than that in control group, the difference was statistically significant (P<0.05), but the percentage in S and G2/M phases decreased obviously in 30 mmHg group (P<0.05). Nevertheless, there was no significant difference in terms of cell cycle between 20 mmHg and 10 mmHg groups (P>0.05). It was examined by scratch assay that the migration ability of HSFB in 30 mmHg pressure group was significantly decreased (t=10.66, P=0.004).

Conclusion

It was indicated that the in vitro 3D model of cell culture and pressure with Flexcell-5000C pressure system and rat tail type I collagen established in this study exhibited stable and handy with real time controllable and adjustable pressure value. With this model, it was successfully verified that pressure could inhibit the proliferation and migration but accelerate the apoptosis and transdifferentiation to Fb of HSFbs, in which 30 mmHg was testified to be the best pressure value. The study raises a new scientific idea and provide in vitro model for the pressure management of hypertrophic scar.

图1 Flexcell-5000C系统示意图及作用原理。A示Flexcell-5000C系统;B示压力系统原理
图2 Flexcell-5000C压力培养系统。A示压力培养板;B示培养箱;C示软件操纵系统
图3 倒置相差显微镜下HSFb形态呈不规律长梭形,扁平并伴有突起(×40)
图4 蛋白质印迹法检测α-SMA蛋白表达。A示条带图;B示条图
图5 共聚焦显微镜下不同压力HSFb的形变程度(×100)
表1 不同压应力作用24 h后HSFb增殖指数、早期凋亡率的变化(±s)
图6 共聚焦显微镜下不同压力HSFb Ki67荧光强度变化(×100)
图7 EdU插入法流式增殖峰图。A示对照组;B示10 mmHg压力组;C示20 mmHg压力组;D示30 mmHg压力组
图8 不同压力对HSFb凋亡影响。A、B、C、D示Annexin-V-PI双染流式散点图,分别为对照组、10 mmHg压力组、20 mmHg压力组、30 mmHg压力组;HSFb为瘢痕成纤维细胞
表2 不同压应力作用后HSFb细胞DNA周期变化(%, ±s)
图9 不同压力对HSFb周期影响。A、B、C、D示PI染色细胞周期图,分别为对照组、10 mmHg压力组、20 mmHg压力组、30 mmHg压力组;HSFb为瘢痕成纤维细胞
图10 倒置相差显微镜下不同培养时间压力作用下HSFb划痕实验(×40)
[1]
Esselman PC. Burn rehabilitation: an overview[J]. Arch Phys Med Rehabil, 2007, 88(12 Suppl 2): S3-S6.
[2]
Lee JY, Yang CC, Chao SC, et al. Histopathological differential diagnosis of keloid and hypertrophic scar[J]. Am J Dermatopathol, 2004, 26(5): 379-384.
[3]
肖洪,李建福. 压应力对增生性瘢痕成纤维细胞增殖与凋亡的影响[J]. 中国修复重建外科杂志, 2007,21(12): 1330-1334.
[4]
Wall M, Butler D, El HA, et al. Key developments that impacted the field of mechanobiology and mechanotransduction[J]. J Orthop Res, 2018, 36(2): 605-619.
[5]
Chowdhury TT, Arghandawi S, Brand J, et al. Dynamic compression counteracts IL-1beta induced inducible nitric oxide synthase and cyclo-oxygenase-2 expression in chondrocyte/agarose constructs[J]. Arthritis Res Ther, 2008, 10(2): R35.
[6]
马倩玉,武晓莉. 增生性瘢痕和瘢痕疙瘩的最新治疗进展[J]. 组织工程与重建外科杂志, 2020, 16(1): 1-5.
[7]
田凌云,李映兰,吴英, 等. 压力疗法治疗增生性瘢痕患者有效性的荟萃分析[J]. 中华烧伤杂志, 2019(9): 668-675.
[8]
Candy LH, Cecilia LT, Ping ZY. Effect of different pressure magnitudes on hypertrophic scar in a Chinese population[J]. Burns, 2010, 36(8): 1234-1241.
[9]
Li-Tsang CW, Zheng YP, Lau JC. A randomized clinical trial to study the effect of silicone gel dressing and pressure therapy on posttraumatic hypertrophic scars[J]. J Burn Care Res, 2010, 31(3): 448-457.
[10]
谭加. 压力对增生性瘢痕细胞周期相关基因干预作用的研究[D]. 昆明医科大学, 2013.
[11]
Chawla S, Ghosh S. Regulation of fibrotic changes by the synergistic effects of cytokines, dimensionality and matrix: Towards the development of an in vitro human dermal hypertrophic scar model[J]. Acta Biomater, 2018, 69: 131-145.
[12]
Zhu Z, Ding J, Shankowsky HA, et al. The molecular mechanism of hypertrophic scar[J]. J Cell Commun Signal, 2013, 7(4): 239-252.
[13]
Colwell AS, Phan TT, Kong W, et al. Hypertrophic scar fibroblasts have increased connective tissue growth factor expression after transforming growth factor-beta stimulation[J]. Plast Reconstr Surg, 2005, 116(5): 1387-1390, 1391-1392.
[14]
Xue M, Jackson CJ. Extracellular Matrix Reorganization During Wound Healing and Its Impact on Abnormal Scarring.[J]. Advances in wound care, 2015, 4(3).
[15]
van den Broek LJ, van der Veer WM, de Jong EH, et al. Suppressed inflammatory gene expression during human hypertrophic scar compared to normotrophic scar formation[J]. Exp Dermatol, 2015, 24(8): 623-629.
[16]
刘冰峰,舒斌,彭文要,等. 压力治疗对增生性瘢痕中肥大细胞的作用[J/CD]. 中华损伤与修复杂志(电子版), 2016, 11(04): 273-277.
[1] 蒲卢兰, 李静佳, 陈宇, 周瑜清, 荣欣欣, 侯令密, 周方方. NF2/YAP信号通路通过FSP1诱导CD24高表达的三阴性乳腺癌细胞铁死亡[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(04): 206-211.
[2] 刘昌玲, 张金丽, 张志, 李孝建, 汤文彬, 胡逸萍, 陈宾, 谢晓娜. 负载人脂肪干细胞外泌体的甲基丙烯酰化明胶水凝胶对人皮肤成纤维细胞增殖和迁移的影响[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 517-525.
[3] 宋勤琴, 李双汝, 李林, 杜鹃, 刘继松. 间充质干细胞源性外泌体在改善病理性瘢痕中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 550-553.
[4] 蒋敏, 刘馨竹, 李大伟, 冯柏塨, 申传安. 点阵CO2激光联合其他非手术方式治疗痤疮瘢痕有效性的网状荟萃分析[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 429-439.
[5] 孙俊锋, 涂家金, 付丹, 蒋满香, 刘金晶, 崔乃硕. 手部烧伤瘢痕挛缩畸形整形术后综合康复联合点阵二氧化碳激光治疗的临床效果[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 411-415.
[6] 聂生军, 王钰, 王毅, 鲜小庆, 马生成. 复方倍他米松局部注射联合光动力疗法治疗小型瘢痕疙瘩的临床疗效观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 404-410.
[7] 张梦思, 麻艺群, 蒙礼娟, 朱辉, 付晋凤. 压力手套与指蹼加压带及泡沫型硅凝胶贴膜联合应用于儿童瘢痕性并指术后的效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 329-334.
[8] 温春泉, 陈欣, 尹凯, 赵筱卓, 张琮, 程琳, 陈辉. 旋肩胛动脉穿支皮瓣在烧伤后重度腋窝瘢痕挛缩畸形整形修复治疗中的应用[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 294-298.
[9] 刘静, 王燕妮, 王继萍. 儿童毛发移植应用前景及病例讨论[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 368-368.
[10] 陈向军, 于丽, 王星, 梁俊青, 吴迪, 李志军. 采用不同方法联合放射治疗修复薄型瘢痕疙瘩的临床疗效分析[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(03): 215-222.
[11] 苏湘鹏, 王晓, 张基勋, 王超, 董欣欣, 祁永军, 刘振中. YAP蛋白的亚细胞定位在瘢痕疙瘩发生中的作用[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(02): 180-183.
[12] 刘高雨, 罗鹏, 史春梦. 成纤维细胞重编程与创面修复的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(02): 176-179.
[13] 李卓骋, 陈羽翔, 高亮, 张宇, 朱许源, 马晓杰, 李涛, 赵甜甜, 蒋鸿涛. 巨噬细胞-肌成纤维细胞转化在肾纤维化过程中的作用[J/OL]. 中华移植杂志(电子版), 2024, 18(03): 181-185.
[14] 陈惠燕, 吴瑶, 黄宗炫, 卜歆, 王庆惠, 纪辉涛, 陈银珍, 赵虎. 肾间质纤维化中胶原/DDR2 信号活化对肾成纤维细胞增殖和迁移功能影响的实验研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 294-302.
[15] 徐立, 阎岩. aFGF修饰自体成纤维细胞治疗食管吻合口瘘的实验研究[J/OL]. 中华胸部外科电子杂志, 2024, 11(03): 180-187.
阅读次数
全文


摘要