切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2021, Vol. 16 ›› Issue (02) : 132 -139. doi: 10.3877/cma.j.issn.1673-9450.2021.02.008

所属专题: 文献

论著

体外构建3D细胞压力培养模型研究压力对增生性瘢痕成纤维细胞的作用
刘宁1, 王鹏1, 蔡瑞昭1, 李猛智1, 赵菁玲1, 陈蕾1, 舒斌1, 刘旭盛1, 祁少海1,()   
  1. 1. 510080 广州,中山大学附属第一医院烧伤外科
  • 收稿日期:2021-01-09 出版日期:2021-04-01
  • 通信作者: 祁少海
  • 基金资助:
    国家自然科学基金(81971833、81971884); 广东省基础与应用基础研究基金项目(2019A1515110045、2020B1515020049)

Study on the effects of pressure on the growth characteristics of hypertrophic scar fibroblasts by establishing in vitro 3D model of cell pressure culture

Ning Liu1, Peng Wang1, Ruizhao Cai1, Mengzhi Li1, Jingling Zhao1, Lei Chen1, Bin Shu1, Xusheng Liu1, Shaohai Qi1,()   

  1. 1. Department of Burns Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
  • Received:2021-01-09 Published:2021-04-01
  • Corresponding author: Shaohai Qi
引用本文:

刘宁, 王鹏, 蔡瑞昭, 李猛智, 赵菁玲, 陈蕾, 舒斌, 刘旭盛, 祁少海. 体外构建3D细胞压力培养模型研究压力对增生性瘢痕成纤维细胞的作用[J]. 中华损伤与修复杂志(电子版), 2021, 16(02): 132-139.

Ning Liu, Peng Wang, Ruizhao Cai, Mengzhi Li, Jingling Zhao, Lei Chen, Bin Shu, Xusheng Liu, Shaohai Qi. Study on the effects of pressure on the growth characteristics of hypertrophic scar fibroblasts by establishing in vitro 3D model of cell pressure culture[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2021, 16(02): 132-139.

目的

采用Flexcell-5000C压力系统和鼠尾I型胶原构建3D细胞压力培养模型,在体外细胞水平探讨压力对增生性瘢痕成纤维细胞(HSFb)的作用。

方法

胶原酶消化法分离培养原代HSFb,采用Flexcell-5000C压力系统和鼠尾I型胶原体外构建HSFb 3D培养模型。实验分为对照组(未施压)、10 mmHg压力组、20 mmHg压力组、30 mmHg压力组。通过免疫荧光观察不同压力下HSFb的表型变化;Ki-67/Edu免疫荧光染色检测HSFb增殖能力;Annexin-V-PI流式双染检测HSFb凋亡;PI流式单染检测HSFb细胞周期;划痕实验检测HSFb迁移能力。数据比较采用单因素方差分析和LSD-t检验。

结果

激光共聚焦显微镜下可见HSFb表型随着压力增大逐渐向正常皮肤成纤维细胞(FB)转变,且在30 mmHg压力下最显著;Ki-67/Edu免疫荧光染色显示:HSFb增殖能力与压力值成反比,20 mmHg、30 mmHg组较对照组HSFb增殖能力显著降低(F=10.61,P=0.0037),而其余各组组间HSFb增殖能力差异无统计学意义(P>0.05);Annexin-V-PI流式双染显示:相比于对照组、10 mmHg压力组、20 mmHg压力组及30 mmHg压力组HSFb早期凋亡率显著升高,差异有统计学意义(F=103.8,P<0.0001),而10、20 mmHg压力组HSFb早期凋亡率较对照组差异无统计学意义(P>0.05);PI流式单染结果显示:相比于对照组、10 mmHg压力组及20 mmHg压力组,30 mmHg压力组G0/G1期HSFb百分比显著升高(F=21.58, P=0.0003),S期及G2/M期HSFb百分比显著下降(F=93.89、54.11,P<0.001、=0.0066);相比于对照组,10 mmHg及20 mmHg G0/G1期HSFb百分比显著升高,S期及G2/M期HSFb百分比显著下降(P<0.05);而20 mmHg与10 mmHg相比,HSFb细胞周期差异无统计学意义(P>0.05);划痕实验结果显示,与对照组相比,30 mmHg压力组HSFb迁移能力明显下降(t=10.66,P=0.004)。

结论

基于Flexcell-5000C压力系统和鼠尾I型胶原构建的3D细胞压力培养模型便捷稳定,压力值实时可调可控,成功验证了压力能够抑制HSFb增殖、迁移,且促进其凋亡及向Fb转分化的作用,并初步证实了30 mmHg为最佳压力值,为HS压力治疗提供了新的研究思路和体外模型。

Objective

To establish in vitro 3D model of cell culture and pressure with Flexcell-5000C pressure system and rat tail type I collagen to explore the in vitro effect of pressure on hypertrophic scar fibroblasts (HSFb) at cellular level.

Methods

The primary HSFbs were isolated and cultured by collagenase digestion. A 3D culture model of HSFb was constructed in vitro with Flexcell-5000C pressure system and rat tail type I collagen. All the HSFbs were randomly divided into control group (no pressure) and 10 mmHg , 20 mmHg and 30 mmHg pressure groups. The cytomorphosis of HSFbs in different pressure was monitored by immunofluorescence. The cellular proliferation index of HSFbs was examined by ki67/EdU immunofluorescence staining of chromosome. The HSFbs apoptosis was detected by Annexin-V-PI double flow cytometry. The cell cycle was detected by PI single staining flow cytometry and cell migration rate, by scratch assay. Data were processed with one-way analysis of variance and the LSD-t test.

Results

Examined by confocal microscope, the morhpological changes happened in HSFbs under mechanical pressure. The HSFb phenotype was gradually transferred to normal fibroblast (FB) along with the increase of the pressure, especially under 30 mmHg pressure. It was indicated by Ki-67/Edu immunofluorescence staining that the proliferation capacity of HSFbs was inversely proportional to the pressure value. The proliferation value of HSFbs in 20 mmHg and 30 mmHg groups was evidently lower than that in control group, the difference was statistically significant (F=10.61, P=0.0037). But there was no significant difference of the proliferation value among all the other groups (P>0.05). It was indicated by Annexin-V-PI double flow cytometry that the early apoptosis rate in 30 mmHg group was much higher than that in the control, 10 mmHg and 20 mmHg groups (F=103.8, P<0.0001). And there was no significant difference of apoptosis between 10 mmHg, 20 mmHg and control groups(P> 0.05). It was exhibited by PI single staining flow cytometry that the HSFb percentage in 30 mmHg group increased in G0/G1 phases(F=21.58, P=0.0003) and decreased in S and G2/M phases significantly(F=93.89、54.11, P<0.001、=0.0066), when compared with that in control 10 mmHg and 20 mmHg groups. Furthermore, the HSFb percentage in G0/G1 phases in the 10 mmHg and 20 mmHg groups was much higher than that in control group, the difference was statistically significant (P<0.05), but the percentage in S and G2/M phases decreased obviously in 30 mmHg group (P<0.05). Nevertheless, there was no significant difference in terms of cell cycle between 20 mmHg and 10 mmHg groups (P>0.05). It was examined by scratch assay that the migration ability of HSFB in 30 mmHg pressure group was significantly decreased (t=10.66, P=0.004).

Conclusion

It was indicated that the in vitro 3D model of cell culture and pressure with Flexcell-5000C pressure system and rat tail type I collagen established in this study exhibited stable and handy with real time controllable and adjustable pressure value. With this model, it was successfully verified that pressure could inhibit the proliferation and migration but accelerate the apoptosis and transdifferentiation to Fb of HSFbs, in which 30 mmHg was testified to be the best pressure value. The study raises a new scientific idea and provide in vitro model for the pressure management of hypertrophic scar.

图1 Flexcell-5000C系统示意图及作用原理。A示Flexcell-5000C系统;B示压力系统原理
图2 Flexcell-5000C压力培养系统。A示压力培养板;B示培养箱;C示软件操纵系统
图3 倒置相差显微镜下HSFb形态呈不规律长梭形,扁平并伴有突起(×40)
图4 蛋白质印迹法检测α-SMA蛋白表达。A示条带图;B示条图
图5 共聚焦显微镜下不同压力HSFb的形变程度(×100)
表1 不同压应力作用24 h后HSFb增殖指数、早期凋亡率的变化(±s)
图6 共聚焦显微镜下不同压力HSFb Ki67荧光强度变化(×100)
图7 EdU插入法流式增殖峰图。A示对照组;B示10 mmHg压力组;C示20 mmHg压力组;D示30 mmHg压力组
图8 不同压力对HSFb凋亡影响。A、B、C、D示Annexin-V-PI双染流式散点图,分别为对照组、10 mmHg压力组、20 mmHg压力组、30 mmHg压力组;HSFb为瘢痕成纤维细胞
表2 不同压应力作用后HSFb细胞DNA周期变化(%, ±s)
图9 不同压力对HSFb周期影响。A、B、C、D示PI染色细胞周期图,分别为对照组、10 mmHg压力组、20 mmHg压力组、30 mmHg压力组;HSFb为瘢痕成纤维细胞
图10 倒置相差显微镜下不同培养时间压力作用下HSFb划痕实验(×40)
[1]
Esselman PC. Burn rehabilitation: an overview[J]. Arch Phys Med Rehabil, 2007, 88(12 Suppl 2): S3-S6.
[2]
Lee JY, Yang CC, Chao SC, et al. Histopathological differential diagnosis of keloid and hypertrophic scar[J]. Am J Dermatopathol, 2004, 26(5): 379-384.
[3]
肖洪,李建福. 压应力对增生性瘢痕成纤维细胞增殖与凋亡的影响[J]. 中国修复重建外科杂志, 2007,21(12): 1330-1334.
[4]
Wall M, Butler D, El HA, et al. Key developments that impacted the field of mechanobiology and mechanotransduction[J]. J Orthop Res, 2018, 36(2): 605-619.
[5]
Chowdhury TT, Arghandawi S, Brand J, et al. Dynamic compression counteracts IL-1beta induced inducible nitric oxide synthase and cyclo-oxygenase-2 expression in chondrocyte/agarose constructs[J]. Arthritis Res Ther, 2008, 10(2): R35.
[6]
马倩玉,武晓莉. 增生性瘢痕和瘢痕疙瘩的最新治疗进展[J]. 组织工程与重建外科杂志, 2020, 16(1): 1-5.
[7]
田凌云,李映兰,吴英, 等. 压力疗法治疗增生性瘢痕患者有效性的荟萃分析[J]. 中华烧伤杂志, 2019(9): 668-675.
[8]
Candy LH, Cecilia LT, Ping ZY. Effect of different pressure magnitudes on hypertrophic scar in a Chinese population[J]. Burns, 2010, 36(8): 1234-1241.
[9]
Li-Tsang CW, Zheng YP, Lau JC. A randomized clinical trial to study the effect of silicone gel dressing and pressure therapy on posttraumatic hypertrophic scars[J]. J Burn Care Res, 2010, 31(3): 448-457.
[10]
谭加. 压力对增生性瘢痕细胞周期相关基因干预作用的研究[D]. 昆明医科大学, 2013.
[11]
Chawla S, Ghosh S. Regulation of fibrotic changes by the synergistic effects of cytokines, dimensionality and matrix: Towards the development of an in vitro human dermal hypertrophic scar model[J]. Acta Biomater, 2018, 69: 131-145.
[12]
Zhu Z, Ding J, Shankowsky HA, et al. The molecular mechanism of hypertrophic scar[J]. J Cell Commun Signal, 2013, 7(4): 239-252.
[13]
Colwell AS, Phan TT, Kong W, et al. Hypertrophic scar fibroblasts have increased connective tissue growth factor expression after transforming growth factor-beta stimulation[J]. Plast Reconstr Surg, 2005, 116(5): 1387-1390, 1391-1392.
[14]
Xue M, Jackson CJ. Extracellular Matrix Reorganization During Wound Healing and Its Impact on Abnormal Scarring.[J]. Advances in wound care, 2015, 4(3).
[15]
van den Broek LJ, van der Veer WM, de Jong EH, et al. Suppressed inflammatory gene expression during human hypertrophic scar compared to normotrophic scar formation[J]. Exp Dermatol, 2015, 24(8): 623-629.
[16]
刘冰峰,舒斌,彭文要,等. 压力治疗对增生性瘢痕中肥大细胞的作用[J/CD]. 中华损伤与修复杂志(电子版), 2016, 11(04): 273-277.
[1] 陈玲, 李楠, 杨建乐. 微小RNA-377-3p调控自噬改善脂多糖/D-半乳糖胺诱导的急性肝衰竭的机制研究[J]. 中华危重症医学杂志(电子版), 2023, 16(02): 89-97.
[2] 居晓庆, 金蕴洁, 王晓燕. 剖宫产术后瘢痕子宫患者再次妊娠阴道分娩发生子宫破裂的影响因素分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 575-581.
[3] 杨一君, 董雯, 刘晓平, 石灿, 张磊, 谷琎, 龚咪, 华馥. 腹腔镜折叠对接缝合联合宫腔镜憩室开渠法治疗剖宫产瘢痕憩室的疗效[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(03): 330-337.
[4] 李敏, 杨凡. 肌细胞因子在儿童肥胖症患儿运动减脂中的作用研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(02): 125-131.
[5] 何雪锋, 赵世新, 李珮珊, 刘恒登, 谢举临. 卡奴卡叶提取物通过增强真皮成纤维细胞功能促进大鼠创面修复的效果观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 405-412.
[6] 黄瑞娟, 德奇, 巴特, 周彪. 对人脐带间充质干细胞外泌体影响热损伤人皮肤成纤维细胞迁移的分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 229-234.
[7] 魏忠玲, 陈赟, 叶美霞, 杨珺雯, 袁竺方. 不同种类敷料治疗糖尿病足疗效比较的网状荟萃分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(02): 157-165.
[8] 甄妙, 李婧婷, 王鹏, 舒斌. 对表皮干细胞外泌体影响增生性瘢痕成纤维细胞作用的观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(02): 134-143.
[9] 王一淼, 何培杰. 成纤维细胞在增生性瘢痕形成中的作用及调控因素[J]. 中华损伤与修复杂志(电子版), 2023, 18(01): 78-85.
[10] 张文涵, 王成. 瘢痕鳞状细胞癌的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(01): 59-64.
[11] 葛盈盈, 岳金, 薛令法, 许尧祥, 赵浩然, 崔明雪, 肖文林. 靶向p38丝裂素活化蛋白激酶对兔唇裂术后瘢痕增生的影响[J]. 中华口腔医学研究杂志(电子版), 2023, 17(01): 37-44.
[12] 孙龙, 政红卫, 俞玲玲, 甄杰. 非小细胞肺癌FGFR3及CyclinD1表达与临床病理特征及预后分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(01): 64-66.
[13] 李颖思, 符芳, 杨昕, 邓琼, 周航, 程肯, 李东至, 廖灿. 单细胞RNA测序技术探究CCN2基因在特纳综合征胎儿颈部淋巴水囊瘤中的关键作用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 220-228.
[14] 那迪娜·帕尔哈提, 黄陈. 肿瘤相关成纤维细胞在结直肠癌发生与发展及化疗耐药中的作用研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(03): 241-247.
[15] 戴莉, 高红艳, 邢肖肖, 王清, 彭妍, 李沁, 王慧. 经阴道子宫憩室修补联合宫腔镜内膜电灼术治疗剖宫产瘢痕憩室的效果分析[J]. 中华临床医师杂志(电子版), 2022, 16(12): 1243-1247.
阅读次数
全文


摘要