[1] |
O′Connor NE, Mulliken JB, Banks-Schlegel S, et al. Grafting of burns with cultured epithelium prepared from autologous epidermal cells[J]. Lancet, 1981, 317(8211): 75-78.
|
[2] |
Gallico GG 3rd, O'Connor NE, Compton CC, et al. Permanent coverage of large burn wounds with autologous cultured human epithelium[J]. N Engl J Med, 1984, 311(7): 448-451.
|
[3] |
Wang X, Shen C, Li Z, et al. Efficient isolation and high yield of epidermal cells from foreskin biopsies by dynamic trypsinization[J]. Burns, 2018, 44(5): 1240-1250.
|
[4] |
Chugh RM, Chaturvedi M, Yerneni LK. An evaluation of the choice of feeder cell growth arrest for the production of cultured epidermis[J]. Burns, 2015, 41(8): 1788-1795.
|
[5] |
Chugh RM, Chaturvedi M, Yerneni LK. Exposure cell number during feeder cell growth-arrest by Mitomycin C is a critical pharmacological aspect in stem cell culture system[J]. J Pharmacol Toxicol Methods, 2016, 100(80): 68-74.
|
[6] |
任亚辉. 甲醇固定法制备饲养层细胞的应用和作用机制[D]. 咸阳:西北农林科技大学,2018.
|
[7] |
Hultman CS, Brinson GM, Siltharm S, et al. Allogeneic fibroblasts used to grow cultured epidermal autografts persist in vivo and sensitize the graft recipient for accelerated second-set rejection[J]. J Trauma, 1996, 41(1): 51-58; discussion 58-60.
|
[8] |
Bisson F, Rochefort E, Lavoie A, et al. Irradiated human dermal fibroblasts are as efficient as mouse fibroblasts as a feeder layer to improve human epidermal cell culture lifespan[J]. Int J Mol Sci, 2013, 14(3): 4684-4704.
|
[9] |
Hanada T, Itahara Y, Katoh M, et al. Keratinization induced by air exposure in the reconstructed human epidermal model: an in vitro model of a cultured epithelial autograft[J]. J Biosci Bioeng, 2014, 118(3): 323-326.
|
[10] |
Yamato M, Utsumi M, Kushida A, et al. Thermo-responsive culture dishes allow the intact harvest of multilayered keratinocyte sheets without dispase by reducing temperature[J]. Tissue Eng, 2001, 7(4): 473-480.
|
[11] |
Cuono CB, Langdon R, Birchall N, et al. Composite autologous-allogeneic skin replacement: development and clinical application[J]. Plast Reconstr Surg, 1987, 80(4): 626-637.
|
[12] |
Chua AW, Khoo YC, Tan BK, et al. Skin tissue engineering advances in severe burns: review and therapeutic applications[J]. Burns Trauma, 2016, 1(4): 1-14.
|
[13] |
Sood R, Roggy D, Zieger M, et al. Cultured epithelial autografts for coverage of large burn wounds in eighty-eight patients: the Indiana University experience[J]. J Burn Care Res, 2010, 31(4): 559-568.
|
[14] |
Hansbrough JF, Franco ES. Skin replacements[J]. Clin Plast Surg, 1998, 25(3): 407-423.
|
[15] |
Pandya AN, Woodward B, Parkhouse N. The use of cultured autologous keratinocytes with integra in the resurfacing of acute burns[J]. Plast Reconstr Surg, 1998, 102(3): 825-828; discussion 829-830.
|
[16] |
Macneil S. Progress and opportunities for tissue-engineered skin[J]. Nature, 2007, 445(7130): 874-880.
|
[17] |
Matsumura H, Matsushima A, Ueyama M, et al. Application of the cultured epidermal autograft "JACE(®)" for treatment of severe burns: Results of a 6-year multicenter surveillance in Japan[J]. Burns, 2016, 42(4): 769-776.
|
[18] |
Ronfard V, Rives JM, Neveux Y, et al. Long-term regeneration of human epidermis on third degree burns transplanted with autologous cultured epithelium grown on a fibrin matrix[J]. Transplantation, 2000, 70(11): 1588-1598.
|
[19] |
Pellegrini G, Bondanza S, Guerra L, et al. Cultivation of human keratinocyte stem cells: current and future clinical applications[J]. Med Biol Eng Comput, 1998, 36(6): 778-790.
|
[20] |
Teepe RG, Koch R, Haeseker B. Randomized trial comparing cryopreserved cultured epidermal allografts with tulle-gras in the treatment of split-thickness skin graft donor sites[J]. J Trauma, 1993, 35(6): 850-854.
|
[21] |
Yanaga H, Udoh Y, Yamauchi T, et al. Cryopreserved cultured epidermal allografts achieved early closure of wounds and reduced scar formation in deep partial-thickness burn wounds (DDB) and split-thickness skin donor sites of pediatric patients[J]. Burns, 2001, 27(7): 689-698.
|
[22] |
Yim H, Yang HT, Cho YS, et al. A clinical trial designed to evaluate the safety and effectiveness of a thermosensitive hydrogel-type cultured epidermal allograft for deep second-degree burns[J]. Burns, 2014, 40(8): 1642-1649.
|
[23] |
Gurtner G-C, Werner S, Barrandon Y, et al. Wound repair and regeneration[J]. Nature, 2008, 453(7193): 314-321.
|
[24] |
Tamariz-Dominguez E, Castro-Munozledo F, Kuri-Harcuch W. Growth factors and extracellular matrix proteins during wound healing promoted with frozen cultured sheets of human epidermal keratinocytes[J]. Cell Tissue Res, 2002, 307(1): 79-89.
|
[25] |
Lee JS, Chu SG, Lee JW, et al. Application of Cultured Epidermal Homograft (Kaloderm) for Wide Scar Treatment[J]. J Craniofac Surg, 2019, 30(6): e535-e539.
|
[26] |
Hsieh CS, Schuong JY, Huang WS, et al. Five years' experience of the modified Meek technique in the management of extensive burns[J]. Burns, 2008, 34(3): 350-354.
|
[27] |
James SE, Booth S, Dheansa B, et al. Sprayed cultured autologous keratinocytes used alone or in combination with meshed autografts to accelerate wound closure in difficult-to-heal burns patients[J]. Burns, 2010, 36(3): 10-20.
|
[28] |
Braye F, Oddou L, Bertin-Maghit M, et al. Widely meshed autograft associated with cultured autologous epithelium for the treatment of major burns in children: report of 12 cases[J]. Eur J Pediatr Surg, 2000, 10(1): 35-40.
|
[29] |
Sakamoto M, Morimoto N, Inoie M, et al. Cultured Human Epidermis Combined With Meshed Skin Autografts Accelerates Epithelialization and Granulation Tissue Formation in a Rat Model[J]. Ann Plast Surg, 2017, 78(6): 651-658.
|
[30] |
Menon S, Li Z, Harvey JG, et al. The use of the Meek technique in conjunction with cultured epithelial autograft in the management of major paediatric burns[J]. Burns, 2013, 39(4): 674-679.
|
[31] |
Raff T, Hartmann B, Wagner H, et al. Experience with the modified Meek technique[J]. Acta Chir Plast, 1996, 38(4): 142-146.
|
[32] |
Jackson C, Aabel P, Eidet JR, et al. Effect of storage temperature on cultured epidermal cell sheets stored in xenobiotic-free medium[J]. PLoS One, 2014, 9(8): e105808.
|
[33] |
Jackson CJ, Reppe S, Eidet JR, et al. Optimization of Storage Temperature for Retention of Undifferentiated Cell Character of Cultured Human Epidermal Cell Sheets[J]. Sci Rep, 2017, 7(1): 8206.
|
[34] |
Chen F, Zhang W, Wu W, et al. Cryopreservation of tissue-engineered epithelial sheets in trehalose[J]. Biomaterials, 2011, 32(33): 8426-8435.
|
[35] |
Tamariz E, Marsch-Moreno M, Castro-Munozledo F, et al. Frozen cultured sheets of human epidermal keratinocytes enhance healing of full-thickness wounds in mice[J]. Cell Tissue Res, 1999, 296(3): 575-585.
|
[36] |
Monstrey S, Beele H, Kettler M, et al. Allogeneic cultured keratinocytes vs. cadaveric skin to cover wide-mesh autogenous split-thickness skin grafts[J]. Ann Plast Surg, 1999, 43(3): 268-272.
|
[37] |
Jang H, Kim YH, Kim MK, et al. Wound-healing potential of Cultured Epidermal Sheets is unaltered after lyophilization: a preclinical study in comparison to cryopreserved CES[J]. Biomed Res Int, 2013, 2013: 907209.
|
[38] |
Lootens L, Brusselaers N, Beele H, et al. Keratinocytes in the treatment of severe burn injury: an update[J]. Int Wound J, 2013, 10(1): 6-12.
|
[39] |
陈才远,陈涛,毕庆霞,等. 预防中厚皮供区瘢痕的新方法——组织工程化表皮膜片即时覆盖[J/CD]. 中华损伤与修复杂志(电子版), 2007, 2(1): 43.
|
[40] |
Brockmann I, Ehrenpfordt J, Sturmheit T, et al. Skin-Derived Stem Cells for Wound Treatment Using Cultured Epidermal Autografts: Clinical Applications and Challenges[J]. Stem Cells Int, 2018, 2018: 4623615.
|
[41] |
Kanai N, Yamato M, Ohki T, et al. Fabricated autologous epidermal cell sheets for the prevention of esophageal stricture after circumferential ESD in a porcine model[J]. Gastrointest Endosc, 2012, 76(4): 873-881.
|
[42] |
Golinski P, Menke H, Hofmann M, et al. Development and Characterization of an Engraftable Tissue-Cultured Skin Autograft: Alternative Treatment for Severe Electrical Injuries[J]. Cells Tissues Organs, 2014, 200(3/4): 227-239.
|
[43] |
Golinski PA, Zoller N, Kippenberger S, et al. Development of an engraftable skin equivalent based on matriderm with human keratinocytes and fibroblasts[J]. Handchir Mikrochir Plast Chir, 2009, 41(6): 327-332.
|
[44] |
Suzuki Y, Inokuchi S, Takazawa K, et al. Introduction of human beta-defensin-3 into cultured human keratinocytes and fibroblasts by infection of a recombinant adenovirus vector[J]. Burns, 2011, 37(1): 109-116.
|
[45] |
尹凯. 细胞—微粒皮法修复深度创面的实验研究[D]. 北京:解放军医学院,2016.
|
[46] |
施彦,舒斌,杨荣华,等. Wnt和Notch信号通路在大鼠创面愈合模型中的表达作用[J/CD]. 中华损伤与修复杂志(电子版), 2014, 9(2): 31-34.
|
[47] |
Nakajima R, Takeda S. Efficient fabrication of epidermal cell sheets using gamma-secretase inhibitor[J]. J Dermatol Sci, 2014, 76(3): 246-254.
|
[48] |
Suzuki D, Pinto F, Senoo M. Inhibition of TGF-beta signaling promotes expansion of human epidermal keratinocytes in feeder cell co-culture[J]. Wound Repair Regen, 2017, 25(3): 526-531.
|
[49] |
Pellegrini G, Ranno R, Stracuzzi G, et al. The control of epidermal stem cells (holoclones) in the treatment of massive full-thickness burns with autologous keratinocytes cultured on fibrin[J]. Transplantation, 1999, 68(6): 868-879.
|